第七章 向量与空间解析几何 1
第一节 空间直角坐标系与向量的概念 2
一、空间直角坐标系 2
二、向量及其线性运算 3
第二节 向量的运算 6
一、向量的坐标表示法 6
二、向量的数量积 8
三、向量的向量积 10
第三节 平面方程 12
一、平面的点法式方程 12
二、平面的一般式方程 13
三、平面之间的位置关系 14
四、点到平面的距离 15
第四节 直线方程 16
一、空间直线的点向式方程与参数方程 16
二、空间直线的一般方程 17
三、两条直线的夹角 18
四、直线与平面的夹角 19
五、点到直线的距离 20
第五节 空间曲面与曲线的方程 21
一、空间曲面方程的概念 21
二、球面的方程 21
三、柱面的方程 22
四、旋转曲面的方程 23
五、二次曲面 25
六、空间曲线的方程 27
七、投影柱面与投影曲线 28
第六节 演示与实验 31
一、用MATLAB做向量的运算 31
二、用MATLAB绘制三维图形 32
第八章 多元函数微分学 39
第一节 多元函数的极限与连续性 40
一、点集和区域 40
二、多元函数的概念 41
三、二元函数的极限与连续性 44
第二节 偏导数 47
一、偏导数 47
二、高阶偏导数 51
第三节 全微分 53
一、全微分的定义 53
二、全微分的计算 55
三、全微分在近似计算中的应用 55
第四节 多元复合函数与隐函数的微分法 56
一、多元复合函数的求导法则 56
二、全微分形式不变性 58
三、多元隐函数的微分法 59
四、多元函数微分法的几何应用 61
第五节 方向导数与梯度 65
一、方向导数 65
二、梯度 68
第六节 二元函数的极值与条件极值 71
一、二元函数的极值 71
二、二元函数的最值 73
三、条件极值、拉格朗日乘数法 74
第七节 演示与实验——用MATLAB做多元函数微分运算 76
一、用MATLAB求多元函数的偏导数 76
二、用MATLAB求二元函数的极值与最值 78
第九章 重积分 86
第一节 二重积分的概念与性质 87
一、二重积分的概念 87
二、二重积分的性质 89
第二节 二重积分的计算 91
一、直角坐标系下计算二重积分 91
二、极坐标系下计算二重积分 97
第三节 三重积分的概念及其计算 102
一、三重积分的概念 102
二、三重积分的计算 103
第四节 重积分的应用 108
一、曲面的面积 108
二、重心(质心) 109
三、转动惯量 111
第五节 演示与实验——用MATLAB求二重积分 113
第十章 曲线积分与曲面积分 119
第一节 第一类曲线积分——对弧长的曲线积分 120
一、第一类曲线积分的定义 120
二、第一类曲线积分的性质 121
三、对弧长的曲线积分的计算 121
四、第一类曲线积分的物理应用 123
第二节 第二类曲线积分——对坐标的曲线积分 125
一、第二类曲线积分的定义 125
二、第二类曲线积分的性质 126
三、对坐标的曲线积分的计算 127
四、两类曲线积分之间的联系 130
第三节 格林公式及其应用 130
一、格林公式 131
二、平面上曲线积分与路径无关的条件 135
三、二元函数的全微分 136
第四节 第一类曲面积分——对面积的曲面积分 138
一、第一类曲面积分的概念 138
二、第一类曲面积分的性质 139
三、第一类曲面积分的计算 139
四、第一类曲面积分的物理应用 142
第五节 第二类曲面积分——对坐标的曲面积分 143
一、第二类曲面积分的定义 143
二、第二类曲面积分的性质 146
三、第二类曲面积分的计算 146
四、两类曲面积分之间的联系 150
第六节 高斯公式、通量与散度 153
一、高斯公式 153
二、通量与散度 155
第七节 斯托克斯公式、环流量与旋度 157
一、斯托克斯公式 157
二、环流量与旋度 158
第八节 演示与实验——用MATLAB求曲线积分与曲面积分 160
一、用MATLAB计算曲线积分 160
二、用MATLAB计算曲面积分 162
第十一章 无穷级数 168
第一节 数项级数 169
一、数项级数的概念 169
二、数项级数的性质 171
第二节 正项级数及其敛散性 174
一、正项级数定义 174
二、正项级数的比较审敛法 175
三、正项级数的比值审敛法 177
四、正项级数的根值审敛法 178
第三节 交错级数、任意项级数及其收敛性 179
一、交错级数及其收敛性 179
二、绝对收敛与条件收敛 180
第四节 幂级数及其收敛性 183
一、幂级数的概念 183
二、幂级数的收敛域及运算 184
三、幂级数的性质 186
第五节 将函数展开成幂级数 189
一、麦克劳林级数 189
二、直接法将函数展开成幂级数 190
三、间接法将函数展开成幂级数 191
四、泰勒级数 192
第六节 傅里叶级数 193
一、三角级数 193
二、以2π为周期的函数展开成傅里叶级数 194
三、以2l为周期的函数展开成傅里叶级数 202
第七节 演示与实验——用MATLAB做级数运算 204
一、用MATLAB求级数的和 204
二、用MATLAB进行幂级数展开 205
附录 213
附录一 高等数学常用公式(二) 213
附录二 数学软件MATLAB常用系统函数 221
附录三 数学模型 223
习题答案与提示 238
参考文献 247