《流形导论 第2版 英文版》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:(法)图(LoringW.Tu)著
  • 出 版 社:北京:世界图书北京出版公司
  • 出版年份:2015
  • ISBN:9787510084485
  • 页数:411 页
图书介绍:本书部教程,可以作为高年级本科生或者研究的一年级课程,也可以用于自学。这第二版,增加了50来页新材料,许多篇幅都做了更新;简化了证明,增加了新例子和练习。必需的点集拓扑在附录中用25面的篇幅给出,另外的一些附录重述了实分析和线性代数。书中提供了许多练习和问题的提示和解答。流形、光滑曲线和曲面的高维类似物,这些都是现代数学的基本研究对象。将代数、拓扑和分析几个领域结合起来,流形已经很好地应用在经典力学、广义相对论和量子场论等多个领域。本书直达主题,流形的讲述旨在帮助读者更快地了解这个科目的本质。

A Brief Introduction 1

Chapter 1 Euclidean Spaces 3

1 Smooth Functions on a Euclidean Space 3

1.1 C∞ Versus Analytic Functions 4

1.2 Taylor's Theorem with Remainder 5

Problems 8

2 Tangent Vectors in Rn as Derivations 10

2.1 The Directional Derivative 10

2.2 Germs of Functions 11

2.3 Derivations at a Point 13

2.4 Vector Fields 14

2.5 Vector Fields as Derivations 16

Problems 17

3 The Exterior Algebra of Multicovectors 18

3.1 Dual Space 19

3.2 Permutations 20

3.3 Multilinear Functions 22

3.4 The Permutation Action on Multilinear Functions 23

3.5 The Symmetrizing and Alternating Operators 24

3.6 The Tensor Product 25

3.7 The Wedge Product 26

3.8 Anticommutativity of the Wedge Product 27

3.9 Associativity of the Wedge Product 28

3.10 A Basis for k-Covectors 31

Problems 32

4 Differential Forms on Rn 34

4.1 Differential 1-Forms and the Differential of a Function 34

4.2 Differential k-Forms 36

4.3 Differential Forms as Multilinear Functions on Vector Fields 37

4.4 The Exterior Derivative 38

4.5 Closed Forms and Exact Forms 40

4.6 Applications to Vector Calculus 41

4.7 Convention on Subscripts and Superscripts 44

Problems 44

Chapter 2 Manifolds 48

5 Manifolds 48

5.1 Topological Manifolds 48

5.2 Compatible Charts 49

5.3 Smooth Manifolds 52

5.4 Examples of Smooth Manifolds 53

Problems 57

6 Smooth Maps on a Manifold 59

6.1 Smooth Functions on a Manifold 59

6.2 Smooth Maps Between Manifolds 61

6.3 Diffeomorphisms 63

6.4 Smoothness in Terms of Components 63

6.5 Examples of Smooth Maps 65

6.6 Partial Derivatives 67

6.7 The Inverse Function Theorem 68

Problems 70

7 Quotients 71

7.1 The Quotient Topology 71

7.2 Continuity of a Map on a Quotient 72

7.3 Identification of a Subset to a Point 73

7.4 A Necessary Condition for a Hausdorff Quotient 73

7.5 Open Equivalence Relations 74

7.6 Real Projective Space 76

7.7 The Standard C∞ Atlas on a Real Projective Space 79

Problems 81

Chapter 3 The Tangent Space 86

8 The Tangent Space 86

8.1 The Tangent Space at a Point 86

8.2 The Differential of a Map 87

8.3 The Chain Rule 88

8.4 Bases for the Tangent Space at a Point 89

8.5 A Local Expression for the Differential 91

8.6 Curves in a Manifold 92

8.7 Computing the Differential Using Curves 95

8.8 Immersions and Submersions 96

8.9 Rank,and Critical and Regular Points 96

Problems 98

9 Submanifolds 100

9.1 Submanifolds 100

9.2 Level Sets of a Function 103

9.3 The Regular Level Set Theorem 105

9.4 Examples of Regular Submanifolds 106

Problems 108

10 Categories and Functors 110

10.1 Categories 110

10.2 Functors 111

10.3 The Dual Functor and the Multicovector Functor 113

Problems 114

11 The Rank of a Smooth Map 115

11.1 Constant Rank Theorem 115

11.2 The Immersion and Submersion Theorems 118

11.3 Images of Smooth Maps 120

11.4 Smooth Maps into a Submanifold 124

11.5 The Tangent Plane to a Surface in R3 125

Problems 127

12 The Tangent Bundle 129

12.1 The Topology of the Tangent Bundle 129

12.2 The Manifold Structure on the Tangent Bundle 132

12.3 Vector Bundles 133

12.4 Smooth Sections 136

12.5 Smooth Frames 137

Problems 139

13 Bump Functions and Partitions of Unity 140

13.1 C∞ Bump Functions 140

13.2 Partitions of Unity 145

13.3 Existence of a Partition of Unity 146

Problems 147

14 Vector Fields 149

14.1 Smoothness of a Vector Field 149

14.2 Integral Curves 152

14.3 Local Flows 154

14.4 The Lie Bracket 157

14.5 The Pushforward of Vector Fields 159

14.6 Related Vector Fields 159

Problems 161

Chapter 4 Lie Groups and Lie Algebras 164

15 Lie Groups 164

15.1 Examples of Lie Groups 164

15.2 Lie Subgroups 167

15.3 The Matrix Exponential 169

15.4 The Trace of a Matrix 171

15.5 The Differential of det at the Identity 174

Problems 174

16 Lie Algebras 178

16.1 Tangent Space at the Identity of a Lie Group 178

16.2 Left-Invariant Vector Fields on a Lie Group 180

16.3 The Lie Algebra of a Lie Group 182

16.4 The Lie Bracket on gl(n,R) 183

16.5 The Pushforward of Left-Invariant Vector Fields 184

16.6 The Differential as a Lie Algebra Homomorphism 185

Problems 187

Chapter 5 Differential Forms 190

17 Differential 1-Forms 190

17.1 The Differential of a Function 191

17.2 Local Expression for a Differential 1-Form 191

17.3 The Cotangent Bundle 192

17.4 Characterization of C∞ 1-Forms 193

17.5 Pullback of 1-Forms 195

17.6 Restriction of 1-Forms to an Immersed Submanifold 197

Problems 199

18 Differential k-Forms 200

18.1 Differential Forms 200

18.2 Local Expression for a k-Form 202

18.3 The Bundle Point of View 203

18.4 Smooth k-Forms 203

18.5 Pullback of k-Forms 204

18.6 The Wedge Product 205

18.7 Differential Forms on a Circle 206

18.8 Invariant Forms on a Lie Group 207

Problems 208

19 The Exterior Derivative 210

19.1 Exterior Derivative on a Coordinate Chart 211

19.2 Local Operators 211

19.3 Existence of an Exterior Derivative on a Manifold 212

19.4 Uniqueness of the Exterior Derivative 213

19.5 Exterior Differentiation Under a Pullback 214

19.6 Restriction of k-Forms to a Submanifold 216

19.7 A Nowhere-Vanishing 1-Form on the Circle 216

Problems 218

20 The Lie Derivative and Interior Multiplication 221

20.1 Families of Vector Fields and Differential Forms 221

20.2 The Lie Derivative of a Vector Field 223

20.3 The Lie Derivative of a Differential Form 226

20.4 Interior Multiplication 227

20.5 Properties of the Lie Derivative 229

20.6 Global Formulas for the Lie and Exterior Derivatives 232

Problems 233

Chapter 6 Integration 236

21 Orientations 236

21.1 Orientations of a Vector Space 236

21.2 Orientations and n-Covectors 238

21.3 Orientations on a Manifold 240

21.4 Orientations and Differential Forms 242

21.5 Orientations and Atlases 245

Problems 246

22 Manifolds with Boundary 248

22.1 Smooth Invariance of Domain in Rn 248

22.2 Manifolds with Boundary 250

22.3 The Boundary of a Manifold with Boundary 253

22.4 Tangent Vectors,Differential Forms,and Orientations 253

22.5 Outward-Pointing Vector Fields 254

22.6 Boundary Orientation 255

Problems 256

23 Integration on Manifolds 260

23.1 The Riemann Integral of a Function on Rn 260

23.2 Integrability Conditions 262

23.3 The Integral of an n-Form on Rn 263

23.4 Integral of a Differential Form over a Manifold 265

23.5 Stokes's Theorem 269

23.6 Line Integrals and Green's Theorem 271

Problems 272

Chapter 7 De Rham Theory 274

24 De Rham Cohomology 274

24.1 De Rham Cohomology 274

24.2 Examples of de Rham Cohomology 276

24.3 Diffeomorphism Invariance 278

24.4 The Ring Structure on de Rham Cohomology 279

Problems 280

25 The Long Exact Sequence in Cohomology 281

25.1 Exact Sequences 281

25.2 Cohomology of Cochain Complexes 283

25.3 The Connecting Homomorphism 284

25.4 The Zig-Zag Lemma 285

Problems 287

26 The Mayer-Vietoris Sequence 288

26.1 The Mayer-Vietoris Sequence 288

26.2 The Cohomology of the Circle 292

26.3 The Euler Characteristic 295

Problems 295

27 Homotopy Invariance 296

27.1 Smooth Homotopy 296

27.2 Homotopy Type 297

27.3 Deformation Retractions 299

27.4 The Homotopy Axiom for de Rham Cohomology 300

Problems 301

28 Computation of de Rham Cohomology 302

28.1 Cohomology Vector Space of a Torus 302

28.2 The Cohomology Ring of a Torus 303

28.3 The Cohomology of a Surface of Genus g 306

Problems 310

29 Proof of Homotopy Invariance 311

29.1 Reduction to Two Sections 311

29.2 Cochain Homotopies 312

29.3 Differential Forms on M×R 312

29.4 A Cochain Homotopy Between i? and i? 314

29.5 Verification of Cochain Homotopy 315

Problems 316

Appendices 317

A Point-Set Topology 317

A.1 Topological Spaces 317

A.2 Subspace Topology 320

A.3 Bases 321

A.4 First and Second Countability 323

A.5 Separation Axioms 324

A.6 Product Topology 326

A.7 Continuity 327

A.8 Compactness 329

A.9 Boundedness in Rn 332

A.10 Connectedness 332

A.11 Connected Components 333

A.12 Closure 334

A.13 Convergence 336

Problems 337

B The Inverse Function Theorem on Rn and Related Results 339

B.1 The Inverse Function Theorem 339

B.2 The Implicit Function Theorem 339

B.3 Constant Rank Theorem 343

Problems 344

C Existence of a Partition of Unity in General 346

D Linear Algebra 349

D.1 Quotient Vector Spaces 349

D.2 Linear Transformations 350

D.3 Direct Product and Direct Sum 351

Problems 352

E Quaternions and the Symplectic Group 353

E.1 Representation of Linear Maps by Matrices 354

E.2 Quaternionic Conjugation 355

E.3 Quaternionic Inner Product 356

E.4 Representations of Quaternions by Complex Numbers 356

E.5 Quaternionic Inner Product in Terms of Complex Components 357

E.6 H-Linearity in Terms of Complex Numbers 357

E.7 Symplectic Group 358

Problems 359

Solutions to Selected Exercises Within the Text 361

Hints and Solutions to Selected End-of-Section Problems 367

List of Notations 387

References 395

Index 397