《最优输运 第1分册 英文》PDF下载

  • 购买积分:20 如何计算积分?
  • 作  者:(法)维拉尼著
  • 出 版 社:北京:世界图书北京出版公司
  • 出版年份:2014
  • ISBN:9787510077906
  • 页数:729 页
图书介绍:本书原版980页,是单卷本,为了便于读者阅读,影印版分为2卷。全面讲述最优输运——无论新老问题的专著。本书讲学严谨,基于大量的文献扩充改变而成,使得这本书成为一本相当有价值的宝典类书籍,证明完整自成体系,扩充了文献注解。适于最优输运方面的每个科研人员和研究生,博士及以上的人员不需要预备知识可以完全读懂该书。目次:导引;最优输运的量化描述;最优输运和黎曼几何;Ricci曲率的综合处理;结论和开放问题。

Introduction 1

1 Couplings and changes of variables 5

2 Three examples of coupling techniques 21

3 The founding fathers of optimal transport 29

Part Ⅰ Qualitative description of optimal transport 39

4 Basic properties 43

5 Cyclical monotonicity and Kantorovich duality 51

6 The Wasserstein distances 93

7 Displacement interpolation 113

8 The Monge-Mather shortening principle 163

9 Solution of the Monge problem Ⅰ:Global approach 205

10 Solution of the Monge problem Ⅱ:Local approach 215

11 The Jacobian equation 273

12 Smoothness 281

13 Qualitative picture 333

Part Ⅱ Optimal transport and Riemannian geometry 353

14 Ricci curvature 357

15 Otto calculus 421

16 Displacement convexity Ⅰ 435

17 Displacement convexity Ⅱ 449

18 Volume control 493

19 Density control and local regularity 505

20 Infinitesimal displacement convexity 525

21 Isoperimetric-type inequalities 545

22 Concentration inequalities 567

23 Gradient flows Ⅰ 629

24 Gradient flows Ⅱ:Qualitative properties 693

25 Gradient flows Ⅲ: Functional inequalities 719

Part Ⅲ Synthetic treatment of Ricci curvature 731

26 Analytic and synthetic points of view 735

27 Convergence of metric-measure spaces 743

28 Stability of optimal transport 773

29 Weak Ricci curvature bounds Ⅰ:Definition and Stability 795

30 Weak Ricci curvature bounds Ⅱ:Geometric and analytic properties 847

Conclusions and open problems 903

References 915

List of short statements 957

List of figures 965

Index 967

Some notable cost functions 971