1有关集合的应用问题 1
2对数换底公式的应用 10
3关于三角函数值符号的选择问题 17
4函数图象的描绘 25
5y=Asin(ωx+?)图象的讨论 30
6两倍角余弦公式的应用 36
7半角公式的符号选取问题 41
8万能公式的应用 48
9三角函数和、积互化的灵活运用 55
10如何加深理解反三角函数 63
11反函数的几个问题 70
12怎样检验三角方程的增根和遗根 78
13如何检验同一三角方程不同解的貌异质同 88
14非正常位置图形上三垂线定理的应用 95
15从三棱锥体积公式的证明谈起 101
16怎样求曲线的方程 104
17双曲线的渐近线 116
18离心率和二次曲线形状的关系 123
19掌握特点,学好解析几何 128
20运用极坐标方程解题举例 133
21如何运用直线参数方程解题 140
22用参数方程求轨迹的方法 148
23如何运用基本不等式求函数的极值 158
24如何运用基本不等式证题 167
25含有绝对值不等式的证明 175
26复数运算的几何意义及运用 180
27排列组合应用题解法举例 188
28谈中学概率习题的解法 195
29如何理解充分条件、必要条件和充要条件? 203
30谈用反证法证题 210
31数列的极限 218
32函数的连续性 224
33极限limx→∞(1+1/x)x=e的灵活运用 232
34函数f(x)的导数概念 242
35求函数值域的方法 252
36函数的最大值与最小值 261
37定积分的应用 270
编后 280