《莫尔斯理论 英文》PDF下载

  • 购买积分:9 如何计算积分?
  • 作  者:(美)米尔诺著
  • 出 版 社:上海:世界图书上海出版公司
  • 出版年份:2011
  • ISBN:9787510037481
  • 页数:153 页
图书介绍:本书是作者以M. Spivak和R. Wells的讲义为蓝本扩充而成,成为过去几十年讲述莫尔斯理论的教程中比较著名的作品之一,也是数学领域引用较多的书之一。莫尔斯理论是上个世纪二十年代数学家莫尔斯发明的,其最广泛的应用之一是尝试用有限的信息来理解物体的大尺度结构,这些也是数学物理,动力系统和力学工程面临函待解决的问题。该理论在过去的几十年发展的尤为迅速。

PART Ⅰ.NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD 1

1.Introduction 1

2.Definitions and Lemmas 4

3.Homotopy Type in Terms of Critical Values 12

4.Examples 25

5.The Morse Inequalities 28

6.Manifolds in Euclidean Space:The Existence of Non-degenerate Functions 32

7.The Lefschetz Theorem on Hyperplane Sections 39

PART Ⅱ.A RAPID CORSE IN RIEMANNIAN GEOMETRY 43

8.Covariant Differentiation 43

9.The Curvature Tensor 51

10.Geodesics and Completeness 55

PART Ⅲ.THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS 67

11.The Path Space of a Smooth Manifold 67

12.The Energy of a Path 70

13.The Hessian of the Energy Function at a Critical Path 74

14.Jacobi Fields:The Null-space of E** 77

15.The Index Theorem 83

16.A Finite Dimensional Approximation to Ωc 88

17.The Topology of the Full Path Space 93

18.Existence of Non-conjugate Points 98

19.Some Relations Between Topology and Curvature 100

PART Ⅳ.APPLICATIONS TO LIE GROUPS AND SYMMETRIC SPACES 109

20.Symmetric Spaces 109

21.Lie Groups as Symmetric Spaces 112

22.Whole Manifolds of Minimal Geodesics 118

23.The Bott Periodicity Theorem for the Unitayy Group 124

24.The Periodicity Theorem for the Orthogonal Group 133

APPENDIX.THE HOMOTOPY TYPE OF A MONOTONE UNION 149