《环境生物技术 原理与应用 英文》PDF下载

  • 购买积分:21 如何计算积分?
  • 作  者:(美)里特曼,(美)麦卡蒂著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2012
  • ISBN:9787302302582
  • 页数:760 页
图书介绍:本书以微生物学、化学计量学和细菌能力学为基础,以废水生物处理为主线,详细讲述了用于环境治理和改善的有关生物学和工程技术原理,还介绍了这些原理的主要应用,包括传统应用如活性污泥处理和厌氧消化,还重点介绍了在生物修复、有害污染物的脱毒和降解、饮用水的生物过滤等方面的新兴应用。书中提供了丰富的实例,可帮助读者逐步学习如何进行分析、设计以解决当代环境问题。书中提供了大量图表,每章配有例题和习题。

Chapter 1 BASICS OF MICROBIOLOGY 1

1.1 The Cell 2

1.2 Taxonomy and Phylogeny 4

1.3 Prokaryotes 6

1.3.1 Bacteria 7

1.3.2 Archaea 21

1.4 Eukarya 22

1.4.1 Fungi 22

1.4.2 Algae 26

1.4.3 Protozoa 31

1.4.4 Other Multicellular Microorganisms 34

1.5 Viruses 36

1.6 Infectious Disease 37

1.7 Biochemistry 42

1.8 Enzymes 43

1.8.1 Enzyme Reactivity 46

1.8.2 Regulating the Activity of Enzymes 51

1.9 Energy Capture 51

1.9.1 Electron and Energy Carriers 51

1.9.2 Energy and Electron Investments 54

1.10 Metabolism 55

1.10.1 Catabolism 58

1.10.2 Anabolism 76

1.10.3 Metabolism and Trophic Groups 80

1.11 Genetics and Information Flow 80

1.12 Deoxyribonucleic Acid(DNA) 82

1.12.1 The Chromosome 84

1.12.2 P1asmids 87

1.12.3 DNA Replication 87

1.13 Ribonucleic Acid(RNA) 88

1.13.1 Transcription 88

1.13.2 Messenger RNA(mRNA) 90

1.13.3 Transfer RNA(tRNA) 90

1.13.4 Translation and the Ribosomal RNA(rRNA) 91

1.13.5 Translation 92

1.13.6 Regulation 94

1.14 Phylogeny 94

1.14.1 The Basics of Phylogenetic Classification 97

1.15 Microbial Ecology 99

1.15.1 Selection 100

1.15.2 Exchange of Materials 102

1.15.3 Adaptation 107

1.16 Tools to Study Microbial Ecology 110

1.16.1 Traditional Enrichment Tools 111

1.16.2 Molecular Tools 112

1.16.3 Multispecies Modeling 119

1.17 Bibliography 120

1.18 Problems 121

Chapter 2 STOICHIOMETRY AND BACTERIAL ENERGETICS 126

2.1 An Example Stoichiometric Equation 126

2.2 Empirical Formulas for Microbial Cells 128

2.3 Substrate Partitioning and Cellular Yield 130

2.4 Energy Reactions 132

2.5 Overall Reactions for Biological Growth 141

2.5.1 Fermentation Reactions 145

2.6 Energetics and Bacterial Growth 150

2.6.1 Free Energy ofthe Energy Reaction 151

2.7 Yield Coefficient and Reaction Energetics 155

2.8 Oxidized Nitrogen Sources 159

2.9 Bibliography 161

2.10 Problems 161

Chapter 3 MICROBIAL KINETICS 165

3.1 Basic Rate Expressions 165

3.2 Parameter Values 168

3.3 Basic Mass Balances 171

3.4 Mass Balances on Inert Biomass and Volatile Solids 175

3.5 Soluble Microbial Products 176

3.6 Nutrients and Electron Acceptors 183

3.7 Input Active Biomass 186

3.8 Hydrolysis of Particulate and Polymeric Substrates 188

3.9 Inhibition 191

3.10 Other Alternate Rate Expressions 197

3.11 Bibliography 198

3.12 Problems 199

Chapter 4 BIOFILM KINETICS 207

4.1 Microbial Aggregation 207

4.2 Why Biofilms? 208

4.3 The Idealized Biofilm 208

4.3.1 Substrate Phenomena 210

4.3.2 The Biofilm Itself 213

4.4 The Steady-State Biofilm 214

4.5 The Steady-State-Biofilm Solution 215

4.6 Estimating Parameter Values 220

4.7 Average Biofilm SRT 225

4.8 Completely Mixed Biofilm Reactor 225

4.9 Soluble Microbial Products and Inert Biomass 228

4.10 Trends in CMBRPerformance 231

4.11 Normalized Surface Loading 233

4.12 Nonsteady-State Biofilms 239

4.13 Special-Case Biofilm Solutions 245

4.13.1 Deep Biofilms 246

4.13.2 Zero-Order Kinetics 246

4.14 Bibliography 247

4.15 Problems 248

Chapter 5 REACTORS 261

5.1 Reactor Types 261

5.1.1 Suspended-Growth Reactors 262

5.1.2 Biofilm Reactors 264

5.1.3 Reactor Arrangements 266

5.2 Mass Balances 267

5.3 A Batch Reactor 270

5.4 A Continuous-Flow Stirred-Tank Reactor with Effluent Recycle 273

5.5 A Plug-Flow Reactor 275

5.6 A Plug-Flow Reactor with Effluent Recycle 277

5.7 Reactors with Recycle of Settled Cells 280

5.7.1 CSTR with Settling and Cell Recycling 280

5.7.2 Evaluation of Assumptions 286

5.7.3 Plug-Flow Reactor with Settling and Cell Recycle 287

5.8 Using Alternate Rate Models 289

5.9 Linking Stoichiometric Equations to Mass Balance Equations 289

5.10 Engineering Design of Reactors 292

5.11 Reactors in Series 296

5.12 Bibliography 300

5.13 Problems 300

Chapter 6 THE ACTIVATED SLUDGE PROCESS 307

6.1 Characteristics of Activated Sludge 308

6.1.1 Microbial Ecology 308

6.1.2 Oxygen and Nutrient Requirements 311

6.1.3 Impacts of Solids Retention Time 312

6.2 Process Configurations 313

6.2.1 Physical Configurations 313

6.2.2 Oxygen Supply Modifications 319

6.2.3 Loading Modifications 322

6.3 Design and Operating Criteria 323

6.3.1 Historical Background 324

6.3.2 Food-to-Microorganism Ratio 324

6.3.3 Solids Retention Time 326

6.3.4 Comparison of Loading Factors 329

6.3.5 Mixed-Liquor Suspended Solids,the SVI,and the Recycle Ratio 330

6.3.6 Eckenfelder and McKirney Equations 334

6.4 Aeration Systems 335

6.4.1 Oxygen-Transfer and Mixing Rates 335

6.4.2 Diffused Aeration Systems 338

6.4.3 Mechanical Aeration Systems 339

6.5 Bulking and Other Sludge-Settling Problems 340

6.5.1 Bulking Sludge 340

6.5.2 Foaming and Scum Control 344

6.5.3 Rising Sludge 345

6.5.4 Dispersed Growth and Pinpoint Floc 345

6.5.5 Viscous Bulking 346

6.5.6 Addition of Polymers 346

6.6 Activated Sludge Design and Analysis 346

6.7 Analysis and Design of Settlers 353

6.7.1 Activated-Sludge Properties 353

6.7.2 Settler Components 355

6.7.3 Loading Criteria 360

6.7.4 Basics of Flux Theory 362

6.7.5 State-Point Analysis 368

3.7.6 Connecting the Settler and Aeration Tank 374

6.7.7 Limitations of State-Point Analysis 374

6.8 Centrifugal Separations 375

6.9 Membrane Separations 375

6.10 Bibliography 378

6.11 Problems 380

Chapter 7 LAGOONS 394

7.1 Aerated Lagoons 394

7.2 Stabilization Lagoons 400

7.3 Types of Stabilization Lagoons 401

7.4 Aerobic Stabilization Lagoons 402

7.4.1 Basic Equations 403

7.4.2 Solar Energy Input and Utilization Efficiency 405

7.4.3 BODLRemoval 407

7.4.4 Kinetics of Phototrophic Growth 412

7.4.5 Facultative Stabilization Lagoons 416

7.4.6 Surface BOD5Loading Rates 416

7.4.7 First-Order Kinetics 417

7.5 Anaerobic Stabilization Lagoons 422

7.6 Series Operation 423

7.7 Coliform Reduction 424

7.8 Lagoon Design Details 427

7.9 Removing Suspended Solids fromtheLagoonEffluent 427

7.10 Wetlands Treatment 429

7.11 Bibliography 430

7.12 Problems 431

Chapter 8 AEROBIC BIOFILM PROCESSES 434

8.1 Biofilm Process Considerations 435

8.2 Trickling Filters and Biological Towers 438

8.3 Rotating Biological Contactors 451

8.4 Granular-Media Filters 456

8.5 Fluidized-Bed and Circulating-Bed Biofilm Reactors 457

8.6 Hybrid Biofilm/Suspended-Growth Processes 463

8.7 Bibliography 464

8.8 Problems 465

Chapter 9 NITRIFICATION 470

9.1 Biochemistry and Physiology of Nitrifying Bacteria 470

9.2 Common Process Considerations 474

9.3 Activated Sludge Nitrification:One-Sludge Versus Two-Sludge 474

9.4 Biofilm Nitrificafion 483

9.5 Hybrid Processes 486

9.6 The Role of the Input BODL:TKN Ratio 488

9.7 The ANAMMOX Process 488

9.8 Bibliography 489

9.9 Problems 490

Chapter 10 DENITRIFICATION 497

10.1 Physiology of Denitrifying Bacteria 497

10.2 Tertiary Denitrification 501

10.2.1 Activated Sludge 503

10.2.2 Biofilm Processes 506

10.3 One-Sludge Denitrification 508

10.3.1 Basic One-Sludge Strategies 509

10.3.2 Variations on the Basic One-Sludge Processes 512

10.3.3 Quantitative Analysis of One-Sludge Denitrification 515

10.4 Bibliography 524

10.5 Problems 525

Chapter11 PHOSPHORUS REMOVAL 535

11.1 Normal Phosphorus Uptake into Biomass 535

11.2 Precipitation by Metal-Salts Addition to a Biological Process 537

11.3 Enhanced Biological Phosphorus Removal 539

11.4 Bibliography 545

11.5 Problems 547

Chapter12 DRINKING-WATER TREATMENT 550

12.1 Aerobic Biofilm Processes to Eliminate Biological Instability 551

12.1.1 BOM Measurement Techniques 553

12.1.2 Removing Inorganic Sources of Biological Instability 554

12.1.3 Biofilm Pretreatment 555

12.1.4 Hybrid Biofiltration 558

12.1.5 Slow Biofiltration 561

12.2 Release of Microorganisms 561

12.3 Biodegradation of Specific Organic Compounds 562

1 2.4 Denitrification 563

12.5 Bibliography 566

12.6 Problems 567

Chapter 13 ANAEROBIC TREATMENT BY METHANOGENESIS 569

13.1 Uses for Methanogenic Treatment 570

13.2 Reactor Configurations 573

13.2.1 Completely Mixed 573

13.2.2 Anaerobic Contact 575

13.2.3 Upflow and Downflow Packed Beds 576

13.2.4 F1uidized and Expanded Beds 577

13.2.5 Upflow Anaerobic Sludge Blanket 578

13.2.6 Miscellaneous Anaerobic Reactors 579

13.3 Process Chemistry and Microbiology 581

13.3.1 Process Microbiology 581

13.3.2 Process Chemistry 585

13.4 Process Kinetics 604

13.4.1 Temperature Effects 604

13.4.2 Reaction Kinetics for a CSTR 606

13.4.3 Complex Substrates 609

13.4.4 Process Optimization 614

13.4.5 Reaction Kinetics for Biofilm Processes 616

13.4.6 Kinetics with Hydrolysis as the Limiting Factor 618

13.5 Special Factors for the Design of Anaerobic Sludge Digesters 622

13.5.1 Loading Criteria 623

13.5.2 Mixing 624

13.5.3 Heating 625

13.5.4 Gas Collection 626

13.5.5 Performance 626

13.6 Bibliography 627

13.7 Problems 629

Chapter 14 DETOXIFICATION OF HAZARDOUS CHEMICALS 637

14.1 Factors Causing Molecular Recalcitrance 639

14.1.1 Molecular Structure 640

14.1.2 Environmental Conditions 640

14.1.2 Microorganism Presence 640

14.2 Syntheric Organic Chemical Classes 643

14.3 Energy Metabolism Versus Cometabolism 647

14.4 Electron Donor Versus Electron Acceptor 648

14.5 Minimum Substrate Concentration(Smin) 651

14.6 Biodegradation of Problem Environmental Contaminants 653

14.6.1 Syntheric Detergents 653

14.6.2 Pesticides 654

14.6.3 Hydrocarbons 657

14.6.4 Chlorinated Solvents and Other Halogenated Aliphatic Hydrocarbons 663

14.6.5 Chlorinated Aromatic Hydrocarbons 673

14.6.6 Explosives 678

14.6.7 General Fate Modeling for Organic Chemicals 680

14.6.8 Inorganic Elements 682

14.7 Summary 685

14.8 Bibliography 685

14.9 Problems 689

Chapter 15 BIOREMEDIATION 695

15.1 Scope and Characteristics of Contaminants 696

15.1.1 Organic Compounds 697

15.1.2 Mixtures of Organic Compounds 699

15.1.3 Mixtures Created by Codisposal 702

15.2 Biodegradability 705

15.3 Contaminant Availability for Biodegradation 705

15.3.1 Sorption to Surfaces 706

15.3.2 Formation of a Nonaqueous Phase 708

15.4 Treatability Studies 711

15.5 Engineering Strategies for Bioremediation 713

15.5.1 Site Characterization 713

15.5.2 Engineered In Situ Bioremediation 714

15.5.3 Intrinsic In Situ Bioremediation and Natural Attenuation 717

15.5.4 In Situ Biobarriers 718

15.5.5 Ex Situ Bioremediation 719

15.5.6 Phytoremediation 720

15.5.7 Bioremediation of Gas-Phage VOCs 721

15.6 Evaluating Bioremediation 722

15.7 Bibliography 725

15.8 Problems 728

Appendix A FREE ENERGIES OF FORMATION FOR VARIOUS CHEMICAL SPECIES,25° 730

Appendix B NORMALIZED SURFACE-LOADING CURVE 739