当前位置:首页 > 名称

大约有36,196项符合查询结果项。(搜索耗时:0.2828秒)

为您推荐: 正版机器学习周志华著人工智能及其应用零基础入门书电脑编程程序设计数据分析神经网络与深度 周志华 机器学习 漫画机器学习 快乐机器学习 零基础学机器学习

  • R语言机器学习

    (印)卡西克·拉玛苏布兰马尼安(Karthik Ramasubramanian),(印)阿布舍克·辛格(Abhishek Singh)著2018 年出版411 页ISBN:9787111595915

    本书讲解的是在R语言平台上使用大数据技术构建可扩展机器学习模型的新技术成果。它全面展示了如何采用机器学习算法在原始数据的基础上构建机器学习模型。本书还能让那些希望利用Apache Hadoop、Hive、Pig...

  • 白话机器学习算法

    (新加坡)黄莉婷,(新加坡)苏川集著2019 年出版116 页ISBN:9787115506641

    与使用数学语言或计算机编程语言讲解算法的书不同,本书另辟蹊径,用通俗易懂的人类语言以及大量有趣的示例和插图讲解10多种前沿的机器学习算法。内容涵盖k均值聚类、主成分分析、关联规则、社会网络分析等无...

  • Spark MLlib机器学习实践

    王晓华著2015 年出版176 页ISBN:9787302420422

    本书分为12章,详细介绍Spark MLLib大数据处理和分析的方法和技巧。本书从Spark基础开始,依次介绍MLLib基础,MLLib中RDD详解,MLLib基本概念,协同,过滤算法,线性回归,分类,决策树与保序回归,聚类,关联规则,数据降维,特......

  • 机器学习基础 原理、算法与实践

    袁梅宇著2018 年出版295 页ISBN:9787302500148

    本书主要介绍机器学习的基础算法,采用MATLAB编程实现各个算法。主要内容包括机器学习介绍、线性回归、逻辑回归、模型评估与选择、决策树、K-均值算法和EM、神经网络、K近邻和kd树、贝叶斯与文本分类、隐马...

  • 机器学习与优化

    罗伯托·巴蒂蒂(Roberto Battiti),毛罗·布鲁纳托(Mauro Brunato)2018 年出版272 页ISBN:9787115480293

    本书是机器学习实战领域的一本佳作,从机器学习的基本概念讲起,旨在将初学者引入机器学习的大门,并走上实践的道路。本书通过讲解机器学习中的监督学习和无监督学习,并结合特征选择和排序、聚类方法、文本和网页...

  • 机器学习项目开发实战 NET专家 F# 软件开发 智能机器

    (美)马蒂亚斯·布兰德温德尔(Mathias Brandewinder)2016 年出版264 页ISBN:9787115429513

    本书教你学会利用简单的算法和技巧,构建更智能的.NET应用,从而可以让应用从数据中来自我学习。你可以利用自己熟悉的Visual Studio环境对项目编程,利用.NET环境下理想的F#语言来处理机器学习问题。如果你已经...

  • 机器学习导论 2版

    阿培丁著2014 年出版338 页ISBN:9787111453772

    本书对机器学习的定义和应用实例进行了介绍,涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、维度归约、聚类、非参数方法、决策树、线性判别式、多层感知器、局部模型、隐马尔可夫模型、分类算法评估...

  • 机器学习实践:测试驱动的开发方法

    (美)Matthew Kirk著;段菲译2015 年出版188 页ISBN:9787115396181

    本书面技术开发人员、CTO和咨询顾问人员,介绍了机器学习的基本原理,涵盖了测试驱动的机器学习机器学习概述、K近邻分类、朴素贝叶斯分类、隐马尔科夫模型、支持向量机、神经网络、聚类、核岭回归、模型改进...

  • 大数据挖掘与统计机器学习

    吕晓玲,宋捷主编2019 年出版332 页ISBN:9787300264066

    本课程的教学内容主要包括聚类、关联、降维、变量选择、分类与预测、集成算法、图模型与推荐系统等。每一部分都是本课程授课的主要内容,都力求深入浅出,精讲细讲,不光讲解各种方法的过程与原理,还要加强学生对...

返回顶部