当前位置:首页 > 名称

大约有41,621项符合查询结果项。(搜索耗时:0.1657秒)

为您推荐: アニメーション スレッドjava アニメーション作画法 コミュニケーションのための日本語 モンテカーロシミュレ ションソフトウェア コロケーションが身につく日本語表現練習帳 ヌスレット ギョクチェ氏

  • 机器学习与优化

    罗伯托·巴蒂蒂(Roberto Battiti),毛罗·布鲁纳托(Mauro Brunato)2018 年出版272 页ISBN:9787115480293

    本书是机器学习实战领域的一本佳作,从机器学习的基本概念讲起,旨在将初学者引入机器学习的大门,并走上实践的道路。本书通过讲解机器学习中的监督学习和无监督学习,并结合特征选择和排序、聚类方法、文本和网页...

  • 机器学习项目开发实战 NET专家 F# 软件开发 智能机器

    (美)马蒂亚斯·布兰德温德尔(Mathias Brandewinder)2016 年出版264 页ISBN:9787115429513

    本书教你学会利用简单的算法和技巧,构建更智能的.NET应用,从而可以让应用从数据中来自我学习。你可以利用自己熟悉的Visual Studio环境对项目编程,利用.NET环境下理想的F#语言来处理机器学习问题。如果你已经...

  • 机器学习导论 2版

    阿培丁著2014 年出版338 页ISBN:9787111453772

    本书对机器学习的定义和应用实例进行了介绍,涵盖了监督学习、贝叶斯决策理论、参数方法、多元方法、维度归约、聚类、非参数方法、决策树、线性判别式、多层感知器、局部模型、隐马尔可夫模型、分类算法评估...

  • 机器学习实践:测试驱动的开发方法

    (美)Matthew Kirk著;段菲译2015 年出版188 页ISBN:9787115396181

    本书面技术开发人员、CTO和咨询顾问人员,介绍了机器学习的基本原理,涵盖了测试驱动的机器学习机器学习概述、K近邻分类、朴素贝叶斯分类、隐马尔科夫模型、支持向量机、神经网络、聚类、核岭回归、模型改进...

  • 大数据挖掘与统计机器学习

    吕晓玲,宋捷主编2019 年出版332 页ISBN:9787300264066

    本课程的教学内容主要包括聚类、关联、降维、变量选择、分类与预测、集成算法、图模型与推荐系统等。每一部分都是本课程授课的主要内容,都力求深入浅出,精讲细讲,不光讲解各种方法的过程与原理,还要加强学生对...

  • Java改错学习

    朱福喜编著2013 年出版319 页ISBN:9787302303466

    本书从初学Java编程碰到的实际问题出发,通过对话的方式,一步步引导如何发现错误、找出错误的原因是什么、如何改正错误,如何避免犯同类的错误。通过这种方式,讲解Java的基础知识、面向对象程序设计的技巧和程序...

  • Python机器学习与量化投资

    何海群著2018 年出版288 页ISBN:9787121352102

    本书采用生动活泼的语言,从入门者的角度,讲解Python语言和sklearn模块库,内置的各种经典机器学习算法,结合实盘交易数据,分析在金融量化方面的应用。书中大量简单风趣的实际案例,让广大初学者,快速掌握机器学习在....

  • Python神经网络编程 深度学习机器学习

    (英)塔里克·拉希德著;林赐译2018 年出版197 页ISBN:9787115474810

    本书首先从简单的思路着手,详细介绍了理解神经网络如何工作所必须的基础知识。第一部分介绍基本的思路,包括神经网络底层的数学知识,第2部分是实践,介绍了学习Python编程的流行和轻松的方法,从而逐渐使用该语言...

  • 数据挖掘与机器学习

    吴建生,许桂秋主编2019 年出版170 页ISBN:9787115503527

    本书系统地阐述了数据挖掘产生的背景、技术、多种相关方法及具体应用,主要内容包括数据挖掘概述,数据采集、集成与预处理技术,多维数据分析与组织,预测模型研究与应用,关联规则模型及应用,聚类分析方法与应用,......

返回顶部