当前位置:首页 > 工业技术
人工智能及其应用
人工智能及其应用

人工智能及其应用PDF电子书下载

工业技术

  • 电子书积分:13 积分如何计算积分?
  • 作 者:李国勇,李维民编著
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2009
  • ISBN:9787121079559
  • 页数:365 页
图书介绍:本书为普通高等教育“十一五”国家级规划教材。系统地阐述了人工智能的基本原理、方法和应用技术,比较全面地反映了国内外人工智能研究领域的最新进展和发展方向。全书共分为11章。首先简要介绍了人工智能的发展历史及概况;然后重点介绍了人工智能的知识表示方法,搜索技术和知识推理;最后详细介绍了人工智能的主要应用以及一些应用实例。内容由浅入深、循序渐进,条理清晰,各章均有大量的例题,便于读者掌握和巩固所学知识,让学生在有限的时间内,掌握人工智能的基本原理与应用技术,提高对人工智能习题的求解能力。
《人工智能及其应用》目录

第1章 绪论 1

1.1 人工智能的基本概念 1

1.1.1 人工智能的哲学思考 1

1.1.2 人工智能的定义 2

1.1.3 人工智能的研究目标 2

1.2 人工智能的发展简史 3

1.3 人工智能的研究途径和方法 7

1.4 人工智能的研究与应用领域 9

1.5 人工智能相关网站介绍 14

小结 15

练习题 15

第2章 知识表示 17

2.1 基本概念 17

2.1.1 知识的概念 17

2.1.2 知识的表示方法 19

2.2 状态空间表示法 20

2.3 与/或图表示法 23

2.3.1 问题归约 23

2.3.2 与/或图的表示 23

2.4 一阶谓词逻辑表示法 27

2.4.1 命题逻辑 27

2.4.2 一阶谓词逻辑 30

2.4.3 一阶谓词逻辑表示方法 32

2.4.4 一阶谓词逻辑表示法的特点 35

2.5 产生式表示法 35

2.5.1 产生式的基本形式 35

2.5.2 产生式系统的组成 36

2.5.3 产生式系统的推理方式和控制策略 37

2.5.4 产生式表示法的特点 39

2.6 语义网络表示法 39

2.6.1 语义网络的概念和结构 40

2.6.2 语义网络表示知识的方法 40

2.6.3 语义网络的问题求解过程 44

2.6.4 语义网络表示法的特点 45

2.7 框架表示法 45

2.7.1 框架的基本结构 46

2.7.2 框架系统中的预定义槽名 47

2.7.3 框架网络 48

2.7.4 框架系统的问题求解过程 49

2.7.5 框架表示法的特点 49

2.8 其他表示方法 50

2.8.1 脚本表示法 50

2.8.2 面向对象的表示法 51

2.8.3 过程表示法 55

2.8.4 Petri网表示法 57

小结 58

练习题 58

第3章 搜索技术 60

3.1 搜索的概念 60

3.1.1 基本概念 60

3.1.2 搜索的分类 61

3.2 状态空间搜索 62

3.2.1 状态空间搜索的一般过程 62

3.2.2 盲目搜索策略 64

3.2.3 启发式搜索策略 68

3.3 与/或图搜索 77

3.3.1 与/或图搜索的一般过程 77

3.3.2 与/或图的盲目搜索策略 78

3.3.3 与/或图的启发式搜索策略 78

3.3.4 博弈问题的启发式搜索策略 84

3.4 通用问题的求解方法 89

3.4.1 生成-测试法 89

3.4.2 手段-目标分析法 89

3.4.3 约束满足问题 90

小结 93

练习题 94

第4章 知识推理 96

4.1 推理的概念 96

4.2 归结演绎推理 97

4.2.1 Herbrand理论 97

4.2.2 归结原理 101

4.2.3 归结反演 105

4.3 非归结演绎推理 113

4.3.1 基于规则的演绎推理 113

4.3.2 Bledsoe自然演绎法 119

4.3.3 Boyer-Moore定理证明方法 121

4.3.4 王浩算法 124

4.4 不确定性推理方法 125

4.4.1 不确定性推理的基本问题 125

4.4.2 确定性理论 127

4.4.3 主观贝叶斯方法 131

4.4.4 证据理论 134

小结 139

练习题 139

第5章 高级搜索 141

5.1 最优化问题 141

5.1.1 最优化问题的概念 141

5.1.2 最优化问题的求解 143

5.2 禁忌搜索 145

5.2.1 禁忌搜索的基本思想 145

5.2.2 禁忌搜索的算法流程 147

5.2.3 禁忌搜索算法的收敛性 148

5.2.4 禁忌搜索的特点 148

5.3 遗传算法 148

5.3.1 遗传算法的基本思想 148

5.3.2 遗传算法的实现步骤 150

5.3.3 模式定理 152

5.3.4 遗传算法的特点 153

5.4 模拟退火算法 153

5.4.1 模拟退火算法的基本思想 153

5.4.2 模拟退火算法实现步骤 155

5.4.3 模拟退火算法特点 156

5.5 人工神经网络 156

5.5.1 人工神经网络的基本概念 156

5.5.2 感知机 159

5.5.3 BP神经网络 160

5.5.4 Hopfield网络 163

5.6 其他高级搜索算法 166

5.6.1 进化策略 166

5.6.2 进化编程 169

5.6.3 遗传编程 171

5.6.4 人工生命 174

5.6.5 蚁群优化算法 176

5.6.6 粒子群优化算法 177

5.6.7 免疫计算 178

小结 179

练习题 179

第6章 高级知识表示和知识推理 180

6.1 模糊逻辑 180

6.1.1 模糊集合及其运算 180

6.1.2 模糊关系及其合成 183

6.1.3 模糊向量及其运算 184

6.1.4 模糊逻辑规则 185

6.1.5 模糊逻辑推理 186

6.2 三值逻辑与多值逻辑 188

6.2.1 三值逻辑 188

6.2.2 多值逻辑 190

6.3 模态逻辑 190

6.3.1 基本模态逻辑 190

6.3.2 时态逻辑 194

6.3.3 知道逻辑和信念逻辑 195

6.4 非单调逻辑 202

6.4.1 默认推理 202

6.4.2 限定推理 203

6.4.3 自认识逻辑 206

6.4.4 真值维持系统 207

6.5 不确定性推理 209

6.5.1 贝叶斯网络 209

6.5.2 关联式方法 210

6.5.3 语义描述方法 211

6.6 时间推理与空间推理 212

6.6.1 基于区间的时间推理 212

6.6.2 空间推理 218

6.7 定性推理方法 222

6.7.1 定性推理概述 222

6.7.2 定性方程法 223

6.7.3 定性模拟法 226

6.7.4 定性进程方法 227

6.8 描述逻辑 229

6.8.1 描述逻辑的基本概念 229

6.8.2 描述逻辑的语言规则 231

6.8.3 描述逻辑中的推理 232

6.8.4 描述逻辑语言的扩展 235

小结 237

练习题 237

第7章 Agent及Multi-Agent系统 238

7.1 Agent概述 238

7.1.1 分布式人工智能 238

7.1.2 Agent的基本概念 239

7.2 Agent的理论模型 241

7.2.1 Agent的心智要素及其性质 241

7.2.2 Agent BDI模型 242

7.2.3 效用理论 247

7.3 Agent的结构 247

7.3.1 Agent的基本结构 247

7.3.2 Agent结构的分类 248

7.4 Agent通信 250

7.4.1 言语行为 250

7.4.2 通信的类型和方式 252

7.4.3 Agent的通信语言 254

7.5 Multi-Agent系统 259

7.5.1 Multi-Agent系统的模型和结构 259

7.5.2 Multi-Agent系统的协调和协作 260

7.5.3 Multi-Agent协商 262

7.5.4 Multi-Agent规划 263

7.6 移动Agent 264

7.6.1 移动Agent的基本概念 264

7.6.2 移动Agent的发展 267

7.7 面向Agent的程序设计 268

7.7.1 AOP与OOP的区别 268

7.7.2 AOP框架 269

7.7.3 Agent系统开发的语言 270

小结 271

练习题 271

第8章 自然语言理解 272

8.1 自然语言理解的一般问题 272

8.2 句法分析 276

8.2.1 文法和语言的形式定义 276

8.2.2 乔姆斯基体系 277

8.2.3 句法分析的策略 279

8.2.4 句法模式匹配和转移网络 280

8.2.5 句法分析的确定性算法 283

8.2.6 词汇功能语法 284

8.2.7 基于统计方法的句法分析方法 285

8.3 语义分析 286

8.3.1 语义文法 286

8.3.2 格文法 287

8.4 自然语言理解系统应用举例 288

8.4.1 自然语言自动理解系统 288

8.4.2 MARGIE系统 289

8.5 机器翻译 290

8.5.1 机器翻译基本方法 291

8.5.2 基于规则的机器翻译 292

8.5.3 基于实例的机器翻译 293

8.5.4 基于统计的机器翻译 294

8.5.5 机器翻译评价 295

8.6 语音识别 295

8.7 信息检索 296

小结 297

练习题 297

第9章 机器学习 299

9.1 概述 299

9.2 机器学习的基本结构和主要策略 301

9.2.1 机器学习的基本结构 301

9.2.2 机器学习的主要策略 302

9.3 实例学习 304

9.3.1 基本理论 304

9.3.2 实例学习的基本策略 306

9.3.3 实例学习方法的分类 307

9.4 类比学习 308

9.5 解释学习 311

9.5.1 解释学习的空间描述 311

9.5.2 解释学习的一般步骤 312

9.5.3 解释与泛化交替进行的学习方法 313

9.5.4 基于解释的详细说明法 315

9.6 强化学习 316

9.6.1 强化学习的关键因素 317

9.6.2 寻找最优策略 319

9.7 决策树学习 320

9.7.1 ID3算法 321

9.7.2 最好属性的选择 321

小结 322

练习题 322

第10章 规划系统 323

10.1 规划技术基本概念 323

10.2 早期的自动规划技术 326

10.2.1 GPS 326

10.2.2 Green方法 327

10.3 STRIPS规划 328

10.3.1 积木世界的机器人的问题 328

10.3.2 STRIPS规划知识的表示 329

10.3.3 STRIPS规划的搜索过程 330

10.4 图规划 331

10.5 分层规划 334

10.6 部分排序规划技术 337

10.7 自动规划技术的新进展 338

10.7.1 非经典规划技术的开发 339

10.7.2 自动规划技术的实用化 340

小结 342

练习题 342

第11章 人工智能应用 343

11.1 系统预测 343

11.1.1 基本预测方法 343

11.1.2 基于人工神经网络的矿产资源预测 344

11.2 故障诊断 346

11.3 路径规划 351

11.3.1 路径规划概述 351

11.3.2 基于蚁群算法的旅行商路径搜索 352

11.4 信息检索 356

11.4.1 传统的Web信息检索 356

11.4.2 基于移动Agent的Web信息检索系统 357

11.4.3 基于移动Agent的web检索原型系统开发 358

小结 363

参考文献 364

返回顶部