当前位置:首页 > 工业技术
高维聚类知识发现关键技术研究及应用
高维聚类知识发现关键技术研究及应用

高维聚类知识发现关键技术研究及应用PDF电子书下载

工业技术

  • 电子书积分:10 积分如何计算积分?
  • 作 者:陈建斌著
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2009
  • ISBN:9787121082481
  • 页数:217 页
图书介绍:本书围绕高维数据的聚类问题展开研究,首先讨论了高维数据相似性尤其是高维二元数据相似性的定义,然后提出了基于粗图模型的硬聚类和软聚类算法、高维二元数据的映射聚类算法、基于蚂蚁行为的聚类算法等,并进一步提出基于映射聚类的离群点检测方法;还特别讨论了高维聚类结果的表示方法问题,提出了应用粗糙集高效表达聚类结果的方法;本书最后探讨了聚类知识发现数据建模的基本步骤,并给出聚类知识发现的典型应用案例。
《高维聚类知识发现关键技术研究及应用》目录

第1章 知识发现与KDD 1

1.1 知识与知识发现 1

1.1.1 知识 1

1.1.2 知识发现和KDD 4

1.1.3 知识发现的过程 7

1.2 数据库知识发现——KDD 9

1.2.1 KDD的产生与发展 9

1.2.2 KDD的一般机理和理论基础 11

1.2.3 KDD系统的基本框架 13

1.2.4 KDD的主要任务 13

第2章 聚类知识发现及其关键技术 20

2.1 聚类问题的主要方法 20

2.2 聚类问题的关键技术 24

2.2.1 数据仓库技术 24

2.2.2 高维聚类技术 32

2.3 高维聚类关键技术研究 40

2.3.1 高维聚类的主要算法 40

2.3.2 高维聚类算法的关键技术 46

第3章 高维数据相似性的定义 49

3.1 数据相似关系 49

3.1.1 基于距离的相似性定义 49

3.1.2 基于密度的相似性定义 52

3.1.3 基于连接的相似性定义 52

3.2 高维数据相似关系的定义 53

3.3 二元数据相似性的定义 55

3.3.1 属性分布特征向量 55

3.3.2 对象间属性分布相似性 56

3.4 小结 57

第4章 基于粗图模型的聚类算法 59

4.1 图论基础概念 59

4.2 基于图论的聚类算法 60

4.2.1 聚集型图论聚类 61

4.2.2 多层粗图法 63

4.2.3 基于二部图的方法 65

4.3 图划分的关键技术 67

4.3.1 图的多层二分划(Multilevel Graph Bisection) 67

4.3.2 增强谱分割算法 71

4.3.3 图的非平衡划分技术 72

4.4 多层粗图聚类算法的改进 73

4.4.1 聚类算法 75

4.4.2 图分割的精化算法 77

4.4.3 聚类质量评价 80

4.4.4 实验结果 81

4.4.5 算法评价 85

4.5 基于粗图模型的软聚类方法 86

4.5.1 引言 86

4.5.2 软聚类算法 87

4.5.3 基于图划分法的软聚类GPSC算法 95

4.5.4 实验分析 101

4.5.5 软聚类方法的评价 104

4.6 小结 105

第5章 高维二元数据的映射聚类算法 106

5.1 引言 106

5.2 二元数据 108

5.3 映射聚类模型 109

5.3.1 伯努利分布(Bernoulli distribution) 109

5.3.2 有限混合伯努利分布 110

5.3.3 似然函数 110

5.3.4 EM算法 112

5.3.5 伯努利混合模型的EM算法 112

5.3.6 基于混合模型的映射聚类思想 114

5.4 映射聚类算法 121

5.5 实验结果 123

5.6 小结 125

第6章 基于蚂蚁行为的聚类方法 126

6.1 蚂蚁算法综述 126

6.2 Deneubourg基本模型及LF聚类算法 129

6.2.1 数据对象表示方法及相似性量度 129

6.2.2 Deneubourg基本模型 132

6.2.3 LF聚类算法 133

6.3 基于密度的启发性群体智能聚类算法——HDBCSI 134

6.3.1 记忆体 135

6.3.2 基于密度的先行策略 136

6.3.3 基于密度的启发性群体智能聚类算法HDBCSI算法描述 137

6.3.4 算法测试与比较分析 139

6.3.5 蚂蚁算法评价 142

6.4 小结 142

第7章 高维数据空间的离群点检测方法 143

7.1 概述 143

7.2 高维空间中的离群点发现 146

7.3 子空问离群点发现算法综述 147

7.4 映射离群点发现的思考 150

7.5 映射离群点发现算法的设计 151

7.5.1 映射聚类算法 151

7.5.2 基于熵的属性选择 152

7.5.3 离散属性中离群点的确定 155

7.5.4 簇外属性检测 156

7.6 算法描述及分析 157

7.7 小结 158

第8章 高维数据聚类结果的表示 159

8.1 聚类结果表示方式概述 159

8.1.1 数据可视化 160

8.1.2 表达式法 162

8.2 基于粗糙集理论的知识表示 163

8.2.1 粗糙集基础理论 165

8.2.2 属性空间上的rough集理论 169

8.3 基于粗糙集理论的聚类结果表达 172

8.3.1 一般聚类知识的表达 173

8.3.2 高维二元映射聚类结果的粗糙集表示 177

8.4 小结 179

第9章 聚类知识发现数据建模及应用 181

9.1 数据模型的建立 181

9.1.1 数据仓库的体系结构与建模方法 181

9.1.2 多维数据模型对分析型应用的支持 183

9.1.3 数据建模方案 184

9.2 应用数据准备 185

9.2.1 数据准备的内容 185

9.2.2 数据净化的方法 187

9.2.3 数据的精简 191

9.3 聚类知识发现的应用——电信市场客户分群 193

9.3.1 客户聚类分析流程 193

9.3.2 战术分群与目标市场营销 202

9.4 小结 205

参考文献 206

返回顶部