当前位置:首页 > 工业技术
Python机器学习
Python机器学习

Python机器学习PDF电子书下载

工业技术

  • 电子书积分:11 积分如何计算积分?
  • 作 者:(印)阿布舍克·维贾亚瓦吉亚(Abhishek Vijayvargia)著
  • 出 版 社:北京:人民邮电出版社
  • 出版年份:2019
  • ISBN:9787115501356
  • 页数:270 页
图书介绍:这本书通过数学解释和编程例子描述了机器学习的概念。每一章的内容都是从技术的基本原理和基于真实数据集工作实例开始的。在应用算法的指导下,每种技术都有各自的优点和缺点。 本书提供了python中的代码示例。Python现在已经被全世界所接受。首先,它是免费、开源的。它包含了来自开放社区的非常好的支持。它包含大量的库,所以您不需要编写任何代码。此外,它可扩展为大量数据,适用于大数据技术。
《Python机器学习》目录
标签:机器 学习

第1章 走进机器学习 1

1.1机器学习概述 1

1.2机器学习过程 2

第2章 了解Python 20

2.1为什么选择Python 20

2.2下载和安装Python 22

2.2.1在Windows中安装Python 22

2.2.2Anaconda 24

2.3首个Python程序 26

2.4Python基础 27

2.5数据结构与循环 36

第3章 特征工程 42

3.1什么是特征 42

3.2为什么执行特征工程 43

3.3特征提取 43

3.4特征选择 43

3.5特征工程方法——通用准则 44

3.5.1处理数值特征 44

3.5.2处理分类特征 45

3.5.3处理基于时间的特征 47

3.5.4处理文本特征 47

3.5.5缺失数据 48

3.5.6降维 48

3.6用Python进行特征工程 49

3.6.1Pandas基本操作 49

3.6.2常见任务 57

第4章 数据可视化 62

4.1折线图 63

4.2条形图 66

4.3饼图 67

4.4直方图 68

4.5散点图 69

4.6箱线图 70

4.7采用面向对象的方式绘图 71

4.8Seaborn 73

4.8.1分布图 74

4.8.2双变量分布 75

4.8.3二元分布的核密度估计 75

4.8.4成对双变量分布 76

4.8.5分类散点图 76

4.8.6小提琴图 77

4.8.7点图 78

第5章 回归 79

5.1简单回归 80

5.2多元回归 92

5.3模型评价 94

5.3.1训练误差 95

5.3.2泛化误差 96

5.3.3测试误差 97

5.3.4不可约误差 98

5.3.5偏差—方差权衡 99

第6章 高级回归 105

6.1概述 105

6.2岭回归 112

6.3套索回归 118

6.3.1全子集算法 118

6.3.2用于特征选择的贪心算法 119

6.3.3特征选择的正则化 119

6.4非参数回归 122

6.4.1K-最近邻回归 124

6.4.2核回归 127

第7章 分类 128

7.1线性分类器 129

7.2逻辑回归 133

7.3决策树 147

7.3.1关于树的术语 148

7.3.2决策树学习 149

7.3.3决策边界 151

7.4随机森林 158

7.5朴素贝叶斯 164

第8章 无监督学习 169

8.1聚类 170

8.2K-均值聚类 170

8.2.1随机分配聚类质心的问题 175

8.2.2查找K的值 175

8.3分层聚类 182

8.3.1距离矩阵 184

8.3.2连接 185

第9章 文本分析 189

9.1使用Python进行基本文本处理 189

9.1.1字符串比较 191

9.1.2字符串转换 191

9.1.3字符串操作 192

9.2正则表达式 193

9.3自然语言处理 195

9.3.1词干提取 196

9.3.2词形还原 197

9.3.3分词 197

9.4文本分类 200

9.5主题建模 206

第10章 神经网络与深度学习 209

10.1矢量化 210

10.2神经网络 218

10.2.1梯度下降 220

10.2.2激活函数 221

10.2.3参数初始化 224

10.2.4优化方法 227

10.2.5损失函数 227

10.3深度学习 229

10.4深度学习架构 230

10.4.1深度信念网络 231

10.4.2卷积神经网络 231

10.4.3循环神经网络 231

10.4.4长短期记忆网络 231

10.4.5深度堆栈网络 232

10.5深度学习框架 232

第11章 推荐系统 237

11.1基于流行度的推荐引擎 237

11.2基于内容的推荐引擎 240

11.3基于分类的推荐引擎 243

11.4协同过滤 245

第12章 时间序列分析 249

12.1处理日期和时间 249

12.2窗口函数 254

12.3相关性 258

12.4时间序列预测 261

相关图书
作者其它书籍
返回顶部