推荐系统与深度学习PDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:黄昕,赵伟,王本友等编著
- 出 版 社:北京:清华大学出版社
- 出版年份:2019
- ISBN:9787302513636
- 页数:204 页
第1章 什么是推荐系统 1
1.1推荐系统的概念 1
1.1.1推荐系统的基本概念 1
1.1.2深度学习与推荐系统 4
第2章 深度神经网络 7
2.1什么是深度学习 7
2.1.1深度学习的三次兴起 7
2.1.2深度学习的优势 9
2.2神经网络基础 11
2.2.1神经元 11
2.2.2神经网络 12
2.2.3反向传播 13
2.2.4优化算法 14
2.3卷积网络基础 17
2.3.1卷积层 17
2.3.2池化层 19
2.3.3常见的网络结构 19
2.4循环网络基础 21
2.4.1时序反向传播算法 22
2.4.2长短时记忆网络 24
2.5生成对抗基础 25
2.5.1对抗博弈 26
2.5.2理论推导 27
2.5.3常见的生成对抗网络 29
第3章 TensorFlow平台 31
3.1什么是TensorFlow 31
3.2 TensorFlow安装指南 33
3.2.1 Windows环境安装 33
3.2.2 Linux环境安装 34
3.3 TensorFlow基础 36
3.3.1数据流图 36
3.3.2会话 37
3.3.3图可视化 37
3.3.4变量 37
3.3.5占位符 38
3.3.6优化器 38
3.3.7一个简单的例子 38
3.4其他深度学习平台 39
第4章 推荐系统的基础算法 42
4.1基于内容的推荐算法 42
4.1.1基于内容的推荐算法基本流程 42
4.1.2基于内容推荐的特征提取 45
4.2基于协同的推荐算法 47
4.2.1基于物品的协同算法 49
4.2.2基于用户的协同算法 57
4.2.3基于用户协同和基于物品协同的区别 59
4.2.4基于矩阵分解的推荐方法 61
4.2.5基于稀疏自编码的推荐方法 71
4.3基于社交网络的推荐算法 80
4.3.1基于用户的推荐在社交网络中的应用 81
4.3.2 node2vec技术在社交网络推荐中的应用 85
4.4推荐系统的冷启动问题 94
4.4.1如何解决推荐系统冷启动问题 94
4.4.2深度学习技术在物品冷启动上的应用 101
第5章 混合推荐系统 119
5.1什么是混合推荐系统 119
5.1.1混合推荐系统的意义 120
5.1.2混合推荐系统的算法分类 122
5.2推荐系统特征处理方法 125
5.2.1特征处理方法 126
5.2.2特征选择方法 134
5.3常见的预测模型 141
5.3.1基于逻辑回归的模型 141
5.3.2基于支持向量机的模型 144
5.3.3基于梯度提升树的模型 148
5.4排序学习 150
5.4.1基于排序的指标来优化 150
5.4.2 L2R算法的三种情形 152
第6章 基于深度学习的推荐模型 156
6.1基于DNN的推荐算法 156
6.2基于DeepFM的推荐算法 163
6.3基于矩阵分解和图像特征的推荐算法 171
6.4基于循环网络的推荐算法 174
6.5基于生成对抗网络的推荐算法 176
6.5.1 IRGAN的代码实现 179
第7章 推荐系统架构设计 183
7.1推荐系统基本模型 183
7.2推荐系统常见架构 185
7.2.1基于离线训练的推荐系统架构设计 185
7.2.2面向深度学习的推荐系统架构设计 191
7.2.3基于在线训练的推荐系统架构设计 194
7.2.4面向内容的推荐系统架构设计 197
7.3推荐系统常用组件 199
7.3.1数据上报常用组件 199
7.3.2离线存储常用组件 200
7.3.3离线计算常用组件 200
7.3.4在线存储常用组件 201
7.3.5模型服务常用组件 201
7.3.6实时计算常用组件 201
7.4推荐系统常见问题 201
7.4.1实时性 201
7.4.2多样性 202
7.4.3曝光打击和不良内容过滤 202
7.4.4评估测试 202
后记 203
- 《管理信息系统习题集》郭晓军 2016
- 《信息系统安全技术管理策略 信息安全经济学视角》赵柳榕著 2020
- 《党员干部理论学习培训教材 理论热点问题党员干部学习辅导》(中国)胡磊 2018
- 《系统解剖学速记》阿虎医考研究组编 2019
- 《慢性呼吸系统疾病物理治疗工作手册》(荷)瑞克·考斯林克(RikGosselink) 2020
- 《社会文化系统中的翻译》姜秋霞,杨正军 2019
- 《中国生态系统定位观测与研究数据集 森林生态系统卷 云南西双版纳》邓晓保·唐建维 2010
- 《深度学习与飞桨PaddlePaddle Fluid实战》于祥 2019
- 《深度说服》(英国)尼克·鲍多克 2019
- 《全国普通高等中医药院校药学类专业“十三五”规划教材 第二轮规划教材 有机化学学习指导 第2版》赵骏 2018
- 《市政工程基础》杨岚编著 2009
- 《家畜百宝 猪、牛、羊、鸡的综合利用》山西省商业厅组织技术处编著 1959
- 《《道德经》200句》崇贤书院编著 2018
- 《高级英语阅读与听说教程》刘秀梅编著 2019
- 《计算机网络与通信基础》谢雨飞,田启川编著 2019
- 《看图自学吉他弹唱教程》陈飞编著 2019
- 《法语词汇认知联想记忆法》刘莲编著 2020
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《国家社科基金项目申报规范 技巧与案例 第3版 2020》文传浩,夏宇编著 2019
- 《流体力学》张扬军,彭杰,诸葛伟林编著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019