当前位置:首页 > 工业技术
非线性光纤光学  第5版
非线性光纤光学  第5版

非线性光纤光学 第5版PDF电子书下载

工业技术

  • 电子书积分:18 积分如何计算积分?
  • 作 者:(美)阿戈沃著
  • 出 版 社:世界图书北京出版公司
  • 出版年份:2015
  • ISBN:9787510098536
  • 页数:629 页
图书介绍:伴随着高非线性光纤的出现,其非线性效应得到了越来越多的实际应用。该经典文本对各种高非线性光纤的特性作了全面的更新,并且重点研究了微结构和光子晶体光纤,且对该类光纤的非线性应用也有关注。涉及的课题有:拉曼感应频移、孤子分裂和光波异常的最新发现。第五版旨在反映最新的科学成就,其独特之处是全面覆盖了非线性光纤光学学科,根据传输方程对光纤的各种非线性效应进行了科学归纳与剖析,把光纤对光脉冲的响应特性说清了。
《非线性光纤光学 第5版》目录

CHAPTER 1 Introduction 1

1.1 Historical Perspective 1

1.2 Fiber Characteristics 3

1.2.1 Material and Fabrication 4

1.2.2 Fiber Losses 5

1.2.3 Chromatic Dispersion 6

1.2.4 Polarization-Mode Dispersion 11

1.3 Fiber Nonlinearities 15

1.3.1 Nonlinear Refraction 15

1.3.2 Stimulated Inelastic Scattering 16

1.3.3 Importance of Nonlinear Effects 18

1.4 Overview 19

Problems 21

References 22

CHAPTER 2 Pulse Propagation in Fibers 27

2.1 Maxwell's Equations 27

2.2 Fiber Modes 30

2.2.1 Eigenvalue Equation 30

2.2.2 Single-Mode Condition 31

2.2.3 Characteristics of the Fundamental Mode 32

2.3 Pulse-Propagation Equation 34

2.3.1 Nonlinear Pulse Propagation 34

2.3.2 Higher-Order Nonlinear Effects 39

2.3.3 Raman Response Function and its Impact 41

2.3.4 Extension to Multimode Fibers 45

2.4 Numerical Methods 47

2.4.1 Split-Step Fourier Method 47

2.4.2 Finite-Difference Methods 51

Problems 52

References 53

CHAPTER 3 Group-Velocity Dispersion 57

3.1 Different Propagation Regimes 57

3.2 Dispersion-Induced Pulse Broadening 59

3.2.1 Gaussian Pulses 60

3.2.2 Chirped Gaussian Pulses 62

3.2.3 Hyperbolic-Secant Pulses 64

3.2.4 Super-Gaussian Pulses 65

3.2.5 Experimental Results 67

3.3 Third-Order Dispersion 68

3.3.1 Evolution of Chirped Gaussian Pulses 69

3.3.2 Broadening Factor 71

3.3.3 Arbitrary-Shape Pulses 74

3.3.4 Ultrashort-Pulse Measurements 76

3.4 Dispersion Management 78

3.4.1 GVD-Induced Limitations 78

3.4.2 Dispersion Compensation 80

3.4.3 Compensation of Third-Order Dispersion 81

Problems 83

References 84

CHAPTER 4 Self-Phase Modulation 87

4.1 SPM-Induced Spectral Changes 87

4.1.1 Nonlinear Phase Shift 88

4.1.2 Changes in Pulse Spectra 90

4.1.3 Effect of Pulse Shape and Initial Chirp 93

4.1.4 Effect of Partial Coherence 96

4.2 Effect of Group-Velocity Dispersion 98

4.2.1 Pulse Evolution 98

4.2.2 Broadening Factor 100

4.2.3 Optical Wave Breaking 102

4.2.4 Experimental Results 105

4.2.5 Effect of Third-Order Dispersion 106

4.2.6 SPM Effects in Fiber Amplifiers 108

4.3 Semianalytic Techniques 111

4.3.1 Moment Method 111

4.3.2 Variational Method 112

4.3.3 Specific Analytic Solutions 114

4.4 Higher-Order Nonlinear Effects 115

4.4.1 Self-Steepening 116

4.4.2 Effect of GVD on Optical Shocks 119

4.4.3 Intrapulse Raman Scattering 121

Problems 124

References 125

CHAPTER 5 Optical Solitons 129

5.1 Modulation Instability 129

5.1.1 Linear Stability Analysis 130

5.1.2 Gain Spectrum 131

5.1.3 Experimental Results 133

5.1.4 Ultrashort Pulse Generation 135

5.1.5 Impact on Lightwave Systems 137

5.2 Fiber Solitons 139

5.2.1 Inverse Scattering Method 140

5.2.2 Fundamental Soliton 142

5.2.3 Second and Higher-Order Solitons 144

5.2.4 Experimental Confirmation 147

5.2.5 Soliton Stability 148

5.3 Other Types of Solitons 151

5.3.1 Dark Solitons 151

5.3.2 Bistable Solitons 154

5.3.3 Dispersion-Managed Solitons 156

5.3.4 Optical Similaritons 156

5.4 Perturbation of Solitons 159

5.4.1 Perturbation Methods 159

5.4.2 Fiber Losses 161

5.4.3 Soliton Amplification 163

5.4.4 Soliton Interaction 166

5.5 Higher-Order Effects 170

5.5.1 Moment Equations for Pulse Parameters 170

5.5.2 Third-Order Dispersion 172

5.5.3 Self-Steepening 174

5.5.4 Intrapulse Raman Scattering 176

5.5.5 Propagation of Femtosecond Pulses 181

Problems 183

References 184

CHAPTER 6 Polarization Effects 193

6.1 Nonlinear Birefringence 193

6.1.1 Origin of Nonlinear Birefringence 194

6.1.2 Coupled-Mode Equations 196

6.1.3 Elliptically Birefringent Fibers 197

6.2 Nonlinear Phase Shift 199

6.2.1 Nondispersive XPM 199

6.2.2 Optical Kerr Effect 200

6.2.3 Pulse Shaping 204

6.3 Evolution of Polarization State 206

6.3.1 Analytic Solution 207

6.3.2 Poincaré-Sphere Representation 209

6.3.3 Polarization Instability 212

6.3.4 Polarization Chaos 214

6.4 Vector Modulation Instability 215

6.4.1 Low-Birefringence Fibers 215

6.4.2 High-Birefringence Fibers 218

6.4.3 Isotropic Fibers 220

6.4.4 Experimental Results 221

6.5 Birefringence and Solitons 224

6.5.1 Low-Birefringence Fibers 225

6.5.2 High-Birefringence Fibers 226

6.5.3 Soliton-Dragging Logic Gates 229

6.5.4 Vector Solitons 230

6.6 Random Birefringence 233

6.6.1 Polarization-Mode Dispersion 233

6.6.2 Vector Form of the NLS Equation 234

6.6.3 Effects of PMD on Solitons 236

Problems 239

References 240

CHAPTER 7 Cross-Phase Modulation 245

7.1 XPM-Induced Nonlinear Coupling 246

7.1.1 Nonlinear Refractive Index 246

7.1.2 Coupled NLS Equations 247

7.2 XPM-Induced Modulation Instability 248

7.2.1 Linear Stability Analysis 249

7.2.2 Experimental Results 251

7.3 XPM-Paired Solitons 252

7.3.1 Bright-Dark Soliton Pair 252

7.3.2 Bright-Gray Soliton Pair 254

7.3.3 Periodic Solutions 255

7.3.4 Multiple Coupled NLS Equations 256

7.4 Spectral and Temporal Effects 258

7.4.1 Asymmetric Spectral Broadening 259

7.4.2 Asymmetric Temporal Changes 264

7.4.3 Higher-Order Nonlinear Effects 267

7.5 Applications of XPM 268

7.5.1 XPM-Induced Pulse Compression 268

7.5.2 XPM-Induced Optical Switching 270

7.5.3 XPM-Induced Nonreciprocity 272

7.6 Polarization Effects 274

7.6.1 Vector Theory of XPM 274

7.6.2 Polarization Evolution 275

7.6.3 Polarization-Dependent Spectral Broadening 278

7.6.4 Pulse Trapping and Compression 280

7.6.5 XPM-Induced Wave Breaking 282

7.7 XPM Effects in Birefringent Fibers 284

7.7.1 Fibers with Low Birefringence 284

7.7.2 Fibers with High Birefringence 287

Problems 289

References 290

CHAPTER 8 Stimulated Raman Scattering 295

8.1 Basic Concepts 295

8.1.1 Raman-Gain Spectrum 296

8.1.2 Raman Threshold 297

8.1.3 Coupled Amplitude Equations 300

8.1.4 Effect of Four-Wave Mixing 303

8.2 Quasi-Continuous SRS 305

8.2.1 Single-Pass Raman Generation 305

8.2.2 Raman Fiber Lasers 307

8.2.3 Raman Fiber Amplifiers 310

8.2.4 Raman-Induced Crosstalk 315

8.3 SRS with Short Pump Pulses 316

8.3.1 Pulse-Propagation Equations 317

8.3.2 Nondispersive Case 318

8.3.3 Effects of GVD 320

8.3.4 Raman-Induced Index Changes 323

8.3.5 Experimental Results 325

8.3.6 Synchronously Pumped Raman Lasers 328

8.3.7 Short-Pulse Raman Amplification 330

8.4 Soliton Effects 331

8.4.1 Raman Solitons 331

8.4.2 Raman Soliton Lasers 335

8.4.3 Soliton-Effect Pulse Compression 338

8.5 Polarization Effects 339

8.5.1 Vector Theory of Raman Amplification 339

8.5.2 PMD Effects on Raman Amplification 343

Problems 346

References 347

CHAPTER 9 Stimulated Brillouin Scattering 353

9.1 Basic Concepts 353

9.1.1 Physical Process 354

9.1.2 Brillouin-Gain Spectrum 354

9.2 Quasi-CW SBS 358

9.2.1 Brillouin Threshold 358

9.2.2 Polarization Effects 359

9.2.3 Techniques for Controlling the SBS Threshold 360

9.2.4 Experimental Results 363

9.3 Brillouin-Fiber Amplifiers 366

9.3.1 Gain Saturation 366

9.3.2 Amplifier Design and Applications 367

9.4 SBS Dynamics 370

9.4.1 Coupled Amplitude Equations 370

9.4.2 SBS with Q-Switched Pulses 372

9.4.3 SBS-Induced Index Changes 376

9.4.4 Relaxation Oscillations 380

9.4.5 Modulation Instability and Chaos 382

9.5 Brillouin-Fiber Lasers 384

9.5.1 CW Operation 384

9.5.2 Pulsed Operation 388

Problems 391

References 392

CHAPTER 10 Four-Wave Mixing 397

10.1 Origin of Four-Wave Mixing 397

10.2 Theory of Four-Wave Mixing 399

10.2.1 Coupled Amplitude Equations 400

10.2.2 Approximate Solution 401

10.2.3 Effect of Phase Matching 402

10.2.4 Ultrafast Four-Wave Mixing 404

10.3 Phase-Matching Techniques 405

10.3.1 Physical Mechanisms 405

10.3.2 Phase Matching in Multimode Fibers 406

10.3.3 Phase Matching in Single-Mode Fibers 409

10.3.4 Phase Matching in Birefringent Fibers 414

10.4 Parametric Amplification 417

10.4.1 Review of Early Work 417

10.4.2 Gain Spectrum and Its Bandwidth 418

10.4.3 Single-Pump Configuration 421

10.4.4 Dual-Pump Configuration 425

10.4.5 Effects of Pump Depletion 430

10.5 Polarization Effects 431

10.5.1 Vector Theory of Four-Wave Mixing 432

10.5.2 Polarization Dependence of Parametric Gain 434

10.5.3 Linearly and Circularly Polarized Pumps 437

10.5.4 Effect of Residual Fiber Birefringence 439

10.6 Applications of Four-Wave Mixing 443

10.6.1 Parametric Oscillators 443

10.6.2 Ultrafast Signal Processing 445

10.6.3 Quantum Correlation and Noise Squeezing 447

10.6.4 Phase-Sensitive Amplification 449

Problems 451

References 452

CHAPTER 11 Highly Nonlinear Fibers 457

11.1 Nonlinear Parameter 457

11.1.1 Units and Values of n2 458

11.1.2 SPM-Based Techniques 459

11.1.3 XPM-Based Technique 462

11.1.4 FWM-Based Technique 463

11.1.5 Variations in n2 Values 464

11.2 Fibers with Silica Cladding 467

11.3 Tapered Fibers with Air Cladding 469

11.4 Microstructured Fibers 474

11.4.1 Design and Fabrication 474

11.4.2 Modal and Dispersive Properties 476

11.4.3 Hollow-Core Photonic Crystal Fibers 478

11.4.4 Bragg Fibers 480

11.5 Non-Silica Fibers 481

11.5.1 Lead-Silicate Fibers 482

11.5.2 Chalcogenide Fibers 485

11.5.3 Bismuth-Oxide Fibers 486

11.6 Pulse Propagation in Narrow-Core Fibers 487

11.6.1 Vectorial Theory 487

11.6.2 Frequency-Dependent Mode Profiles 489

Problems 491

References 492

CHAPTER 12 Novel Nonlinear Phenomena 497

12.1 Soliton Fission and Dispersive Waves 497

12.1.1 Fission of Second-and Higher-Order Solitons 498

12.1.2 Generation of Dispersive Waves 501

12.2 Intrapulse Raman Scattering 506

12.2.1 Enhanced RIFS Through Soliton Fission 506

12.2.2 Cross-correlation Technique 510

12.2.3 Wavelength Tuning through RIFS 512

12.2.4 Effects of Birefringence 514

12.2.5 Suppression of Raman-Induced Frequency Shifts 516

12.2.6 Soliton Dynamics Near a Zero-Dispersion Wavelength 520

12.2.7 Multipeak Raman Solitons 523

12.3 Four-Wave Mixing 526

12.3.1 Role of Fourth-Order Dispersion 526

12.3.2 Role of Fiber Birefringence 527

12.3.3 Parametric Amplifiers and Wavelength Converters 531

12.3.4 Tunable Fiber-Optic Parametric Oscillators 532

12.4 Second-Harmonic Generation 534

12.4.1 Physical Mechanisms 534

12.4.2 Thermal Poling and Quasi-Phase Matching 536

12.4.3 SHG Theory 539

12.5 Third-Harmonic Generation 541

12.5.1 THG in Highly Nonlinear Fibers 541

12.5.2 Effects of Group-Velocity Mismatch 543

12.5.3 Effects of Fiber Birefringence 545

Problems 546

References 547

CHAPTER 13 Supercontinuum Generation 553

13.1 Pumping with Picosecond Pulses 553

13.1.1 Nonlinear Mechanisms 554

13.1.2 Experimental Progress After 2000 556

13.2 Pumping with Femtosecond Pulses 559

13.2.1 Microstructured Silica Fibers 559

13.2.2 Microstructured Nonsilica Fibers 563

13.3 Temporal and Spectral Evolutions 566

13.3.1 Numerical Modeling of Supercontinuum 566

13.3.2 Role of Cross-Phase Modulation 570

13.3.3 XPM-Induced Trapping 573

13.3.4 Role of Four-Wave Mixing 577

13.4 CW or Quasi-CW Pumping 579

13.4.1 Nonlinear Mechanisms 579

13.4.2 Experimental Progress 582

13.5 Polarization Effects 585

13.5.1 Birefringent Microstructured Fibers 586

13.5.2 Nearly Isotropic Fibers 587

13.5.3 Nonlinear Polarization Rotation in Isotropic Fibers 589

13.6 Coherence Properties 590

13.6.1 Spectral-Domain Degree of Coherence 591

13.6.2 Techniques for Improving Coherence 594

13.6.3 Spectral Incoherent Solitons 596

13.7 Optical Rogue Waves 598

13.7.1 L-Shaped Statistics of Pulse-to-Pulse Fluctuations 599

13.7.2 Techniques for Controlling Rogue-Wave Statistics 600

13.7.3 Modulation Instability Revisited 602

Problems 606

References 607

Appendix A System of Units 613

Appendix B Numerical Code for the NLS Equation 615

Appendix C List of Acronyms 619

Index 621

相关图书
作者其它书籍
返回顶部