高等代数习作课讲义PDF电子书下载
- 电子书积分:13 积分如何计算积分?
- 作 者:刘云英,张益敏,曹锡皞,李景斋编
- 出 版 社:北京:北京师范大学出版社
- 出版年份:1987
- ISBN:13243·82
- 页数:359 页
第一章 基本概念 1
一、集合 1
二、映射 5
三、映射的合成及可逆映射 12
四、复数 17
五、数域 20
部分习题解答 21
第二章 多项式 24
一、关于一元多项式的定义 24
二、多项式的整除性及带余除法 25
三、多项式的最大公因式及互素多项式 30
四、不可约多项式及多项式的因式分解 36
五、多项式函数、重因式、多项式的根 42
六、复数域、实数域及有理数域上多项式 45
七、多元多项式 49
部分习题解答 63
第三章 行列式 71
一、排列 71
二、行列式的定义 74
三、行列式的基本性质 81
四、子式及依行依列展开 93
五、行列式计算技巧举例 95
六、拉普拉斯(Laplace)定理 112
七、行列式相乘规则 114
八、克莱姆(Crcmer)规则 118
九、两个未知量两个任意次方程的公根 119
第四章 线性方程组 125
一、消元法 125
二、初等变换 132
三、矩阵的秩 135
四、相容性判别法 139
五、公式解 150
部分习题解答 152
第五章 矩阵 157
一、矩阵的运算 157
二、可逆矩阵 166
三、分块矩阵 182
四、矩阵的等价与等价关系 185
第六章 向量空间 190
一、向量空间的定义 190
二、子空间 194
三、向量的线性相关性 198
四、向量组的极大线性无关部分组 211
五、基、维数、坐标、同构 217
部分习题解答 227
第七章 线性变换 234
一、线性映射及线性变换的基本概念 234
二、线性变换和矩阵 248
三、不变子空间 257
四、特征根和特征向量 260
五、可以对角化的矩阵 270
部分习题解答 275
第八章 欧氏空间 286
一、欧氏空间及其内积 286
二、正交基及标准正交基 292
三、正交补空间(简称正交补) 297
四、正交变换及正交矩阵 301
五、关于欧氏空间与向量空间的比较 312
部分习题解答 313
第九章 对称内积和二次型 323
一、内积空间与欧氏空间的比较 323
二、对称内积、对称矩阵和二次型 330
三、实对称矩阵与实正定矩阵 338
四、欧氏空间的对称变换 341
五、西空间介绍 347
部分习题解答 349
- 《习近平总书记教育重要论述讲义》本书编写组 2020
- 《线性代数简明教程》刘国庆,赵剑,石玮编著 2019
- 《高等代数 下》曹重光,生玉秋,远继霞 2019
- 《线性代数及应用》蒋诗泉,叶飞,钟志水 2019
- 《线性代数》孟红玲主编 2017
- 《大学数学名师辅导系列 大学数学线性代数辅导》李永乐 2018
- 《代数簇 英文版》(荷)Eduard Lo 2019
- 《二十面体和5次方程的解的讲义》(德)菲利克斯·克莱因著 2019
- 《线性代数 第5版》蔡光兴,李逢高 2018
- 《写给孩子的趣味代数学》(俄)雅科夫·伊西达洛维奇·别莱利曼著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019