激光原理 第4版PDF电子书下载
- 电子书积分:18 积分如何计算积分?
- 作 者:(意)斯维尔托著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2008
- ISBN:9787506291569
- 页数:604 页
1.Introductory Concepts 1
1.1.Spontaneous and Stimulated Emission,Absorption 2
1.2.The Laser Idea 4
1.3.Pumping Schemes 7
1.4.Properties of Laser Beams 9
1.4.1.Monochromaticity 9
1.4.2.Coherence 9
1.4.3.Directionality 10
1.4.4.Brightness 11
1.4.5.Short Pulse Duration 13
1.5.Laser Types 14
Problems 14
2.Interaction of Radiation with Atoms and Ions 17
2.1.Introduction 17
2.2.Summary of Blackbody Radiation Theory 17
2.2.1.Modes of a Rectangular Cavity 19
2.2.2.Rayleigh-Jeans and Planck Radiation Formula 22
2.2.3.Planck’s Hypothesis and Field Quantization 23
2.3.Spontaneous Emission 25
2.3.1.Semiclassical Approach 26
2.3.2.Quantum Electrodynamics Approach 29
2.3.3.Allowed and Forbidden Transitions 31
2.4.Absorption and Stimulated Emission 32
2.4.1.Absorption and Stimulated Emission Rates 32
2.4.2.Allowed and Forbidden Transitions 36
2.4.3.Transition Cross Section, Absorption,and Gain Coefficient 37
2.4.4.Einstein Thermodynamic Treatment 42
2.5.Line-Broadening Mechanisms 43
2.5.1.Homogeneous Broadening 44
2.5.2.Inhomogeneous Broadening 48
2.5.3.Concluding Remarks 49
2.6.Nonradiative Decay and Energy Transfer 50
2.6.1.Mechanisms of Nonradiative Decay 50
2.6.2.Combined Effects of Radiative and Nonradiative Processes 56
2.7.Degenerate or Strongly Coupled Levels 58
2.7.1.Degenerate Levels 58
2.7.2.Strongly Coupled Levels 60
2.8.Saturation 64
2.8.1.Saturation of Absorption: Homogeneous Line 64
2.8.2.Gain Saturation: Homogeneous Line 68
2.8.3.Inhomogeneously Broadened Line 69
2.9.Fluourescence Decay of an Optically Dense Medium 71
2.9.1.Radiation Trapping 71
2.9.2.Amplified Spontaneous Emission 71
2.10.Concluding Remarks 76
Problems 77
References 78
3.Energy Levels.Radiative.and Nonradiative Transitions in Molecules and Semiconductors 81
3.1.Molecules 81
3.1.1.Energy Levels 81
3.1.2.Level Occupation at Thermal Equilibrium 85
3.1.3.Stimulated Transitions 87
3.1.4.Radiative and Nonradiative Decay 91
3.2.Bulk Semiconductors 92
3.2.1.Electronic States 92
3.2.2.Density of States 96
3.2.3.Level Occupation at Thermal Equilibrium 97
3.2.4.Stimulated Transitions:Selection Rules 101
3.2.5.Absorption and Gain Coefficients 103
3.2.6.Spontaneous Emission and Nonradiative Decay 109
3.2.7.Concluding Remarks 111
3.3.Semiconductor Quantum Wells 112
3.3.1.Electronic States 112
3.3.2.Density of States 115
3.3.3.Level Occupation at Thermal Equilibrium 117
3.3.4.Stimulated Transitions: Selection Rules 118
3.3.5.Absorption and Gain Coefficients 120
3.3.6.Strained Quantum Wells 123
3.4.Quantum Wires and Quantum Dots 125
3.5.Concluding Remarks 126
Problems 127
References 128
4.Ray and Wave Propagation through Optical Media 129
4.1.Introduction 129
4.2.Matrix Formulation of Geometric Optics 129
4.3.Wave Reflection and Transmission at a Dielectric Interface 135
4.4.Multilayer Dielectric Coatings 137
4.5.Fabry-Perot Interferometer 140
4.5.1.Properties of a Fabry-Perot Interferometer 140
4.5.2.Fabry-Perot Interferometer as a Spectrometer 144
4.6.Diffraction Optics in the Paraxial Approximation 145
4.7.Gaussian Beams 148
4.7.1.Lowest Order Mode 148
4.7.2.Free-Space Propagation 151
4.7.3.Gaussian Beams and ABCD Law 154
4.7.4.Higher Order Modes 155
4.8.Conclusions 158
Problems 158
References 160
5.Passive Optical Resonators 161
5.1.Introduction 161
5.1.1.Plane Parallel(Fabry-Perot) Resonator 162
5.1.2.Concentric (Spherical) Resonator 163
5.1.3.Confocal Resonator 163
5.1.4.Generalized Spherical Resonator 163
5.1.5.Ring Resonator 164
5.2.Eigenmodes and Eigenvalues 165
5.3.Photon Lifetime and Cavity Q 167
5.4.Stability Condition 169
5.5.Stable Resonators 173
5.5.1.Resonators with Infinite Aperture 173
5.5.1.1.Eigenmodes 174
5.5.1.2.Eigenvalues 178
5.5.1.3.Standing and Traveling Waves in a Two-Mirror Resonator 180
5.5.2.Effects of a Finite Aperture 181
5.5.3.Dynamically and Mechanically Stable Resonators 184
5.6.Unstable Resonators 187
5.6.1.Geometric Optics Description 188
5.6.2.Wave Optics Description 190
5.6.3.Advantages and Disadvantages of Hard-Edge Unstable Resonators 193
5.6.4.Unstable Resonators with Variable-Reflectivity Mirrors 194
5.7.Concluding Remarks 198
Problems 198
References 200
6.Pumping Processes 201
6.1.Introduction 201
6.2.Optical Pumping by an Incoherent Light Source 204
6.2.1.Pumping Systems 204
6.2.2.Pump Light Absorption 206
6.2.3.Pump Efficiency and Pump Rate 208
6.3.Laser Pumping 210
6.3.1.Laser-Diode Pumps 212
6.3.2.Pump Transfer Systems 214
6.3.2.1.Longitudinal Pumping 214
6.3.2.2.Transverse Pumping 219
6.3.3.Pump Rate and Pump Efficiency 221
6.3.4.Threshold Pump Power for Four-Level and Quasi-Three-Level Lasers 223
6.3.5.Comparison between Diode Pumping and Lamp Pumping 226
6.4.Electrical Pumping 228
6.4.1.Electron Impact Excitation 231
6.4.1.1.Electron Impact Cross Section 232
6.4.2.Thermal and Drift Velocities 235
6.4.3.Electron Energy Distribution 237
6.4.4.Ionization Balance Equation 240
6.4.5.Scaling Laws for Electrical Discharge Lasers 241
6.4.6.Pump Rate and Pump Efficiency 242
6.5.Conclusions 244
Problems 244
References 247
7.Continuous Wave Laser Behavior 249
7.1.Introduction 249
7.2.Rate Equations 249
7.2.1.Four-Level Laser 250
7.2.2.Quasi-Three-Level Laser 255
7.3.Threshold Conditions and Output Power:Four-Level Laser 258
7.3.1.Space-Independent Model 258
7.3.2.Space-Dependent Model 265
7.4.Threshold Condition and Output Power:Quasi-Three-Level Laser 273
7.4.1.Space-Independent Model 273
7.4.2.Space-Dependent Model 274
7.5.Optimum Output Coupling 277
7.6.Laser Tuning 279
7.7.Reasons for Multimode Oscillation 281
7.8.Single-Mode Selection 284
7.8.1.Single-Transverse-Mode Selection 284
7.8.2.Single-Longitudinal-Mode Selection 285
7.8.2.1.Fabry-Perot Etalons as Mode-Selective Elements 285
7.8.2.2.Single-Mode Selection in Unidirectional Ring Resonators 288
7.9.Frequency Pulling and Limit to Monochrornaticity 291
7.10.Laser Frequency Fluctuations and Frequency Stabilization 293
7.11.Intensity Noise and Intensity Noise Reduction 297
7.12.Conclusions 300
Problems 301
References 303
8.Transient Laser Behavior 305
8.1.Introduction 305
8.2.Relaxation Oscillations 305
8.3.Dynamic Instabilities and Pulsations in Lasers 310
8.4.Q-Switching 311
8.4.1.Dynamics of the Q-Switching Process 311
8.4.2.Q-Switching Methods 313
8.4.2.1.Electrooptical Q-Switching 313
8.4.2.2.Rotating Prisms 315
8.4.2.3.Acoustooptic Q-Switches 316
8.4.2.4.Saturable Absorber Q-Switch 317
8.4.3.Operating Regimes 319
8.4.4.Theory of Active Q-Switching 321
8.5.Gain Switching 329
8.6.Mode Locking 330
8.6.1.Frequency-Domain Description 331
8.6.2.Time-Domain Picture 336
8.6.3.Mode-Locking Methods 337
8.6.3.1.Active Mode Locking 337
8.6.3.2.Passive Mode Locking 342
8.6.4.Role of Cavity Dispersion in Femtosecond Mode-Locked Lasers 347
8.6.4.1.Phase Velocity,Group Velocity,and Group-Delay Dispersion 347
8.6.4.2.Limitation on Pulse Duration Due to Group-Delay Dispersion 350
8.6.4.3.Dispersion Compensation 351
8.6.4.4.Soliton-Type Mode Locking 353
8.6.5.Mode-Locking Regimes and Mode-Locking System 355
8.7.Cavity Dumping 359
8.8.Concluding Remarks 361
Problems 361
References 363
9.Solid-State,Dye,and Semiconductor Lasers 365
9.1.Introduction 365
9.2.Solid-State Lasers 365
9.2.1.Ruby Laser 367
9.2.2.Neodymium Lasers 370
9.2.2.1.Nd:YAG Laser 370
9.2.2.2.Nd:Glass Laser 373
9.2.2.3.Other Crystalline Hosts 373
9.2.3.Yb:YAG Laser 374
9.2.4.Er:YAG and Yb:Er:Glass Lasers 376
9.2.5.Tm:Ho:YAG Laser 377
9.2.6.Fiber Lasers 378
9.2.7.Alexandrite Laser 381
9.2.8.Titanium Sapphire Laser 383
9.2.9.Cr:LiSAF and Cr:LiCAF Lasers 385
9.3.Dye Lasers 386
9.3.1.Photophysical Properties of Organic Dyes 387
9.3.2.Characteristics of Dye Lasers 391
9.4.Semiconductor Lasers 394
9.4.1.Principle of Semiconductor Laser Operation 394
9.4.2.Homojunction Lasers 396
9.4.3.Double-Heterostructure Lasers 398
9.4.4.Quantum Well Lasers 402
9.4.5.Laser Devices and Performances 405
9.4.6.Distributed Feedback and Distributed Bragg Reflector Lasers 408
9.4.7.Vertical-Cavity Surface-Emitting Lasers 411
9.4.8.Semiconductor Laser Applications 413
9.5.Conclusions 415
Problems 415
References 417
10.Gas,Chemical,Free-Electon,and X-Ray Lasers 419
10.1.Introduction 419
10.2.Gas Lasers 419
10.2.1.Neutral Atom Lasers 420
10.2.1.1.Helium Neon Laser 420
10.2.1.2.Copper Vapor Laser 425
10.2.2.Ion Lasers 427
10.2.2.1.Argon Laser 427
10.2.2.2.He-Cd Laser 430
10.2.3.Molecular Gas Lasers 432
10.2.3.1.CO2 Laser 432
10.2.3.2.CO Laser 442
10.2.3.3.Nitrogen Laser 444
10.2.3.4.Excimer Lasers 445
10.3.Chemical Lasers 448
10.4.Free-Electron Lasers 452
10.5.X-Ray Lasers 456
10.6.Concluding Remarks 458
Problems 459
References 460
11.Properties of Laser Beams 463
11.1.Introduction 463
11.2.Monochromaticity 463
11.3.First-Order Coherence 464
11.3.1.Degree of Spatial and Temporal Coherence 464
11.3.2.Measurement of Spatial and Temporal Coherence 468
11.3.3.Relation between Temporal Coherence and Monochromaticity 471
11.3.4.Nonstationary Beams 473
11.3.5.Spatial and Temporal Coherence of Single-Mode and Multimode Lasers 473
11.3.6.Spatial and Temporal Coherence of a Thermal Light Source 475
11.4.Directionality 476
11.4.1.Beams with Perfect Spatial Coherence 477
11.4.2.Beams with Partial Spatial Coherence 479
11.4.3.The M2 Factor and the Spot Size Parameter of a Multimode Laser Beam 480
11.5.Laser Speckle 483
11.6.Brightness 486
11.7.Statistical Properties of Laser Light and Thermal Light 487
11.8.Comparison between Laser Light and Thermal Light 489
Problems 491
References 492
12.Laser Beam Transformation:Propagation,Amplification,Frequency Conversion,Pulse Compression,and Pulse Expansion 493
12.1.Introduction 493
12.2.Spatial Transformation:Propagation of a Multimode Laser Beam 494
12.3.Amplitude Transformation:Laser Amplification 495
12.3.1.Examples of Laser Amplifiers: Chirped-Pulse-Amplification 500
12.4.Frequency Conversion: Second-Harmonic Generation and Parametric Oscillation 504
12.4.1.Physical Picture 504
12.4.1.1.Second Harmonic Generation 505
12.4.1.2.Parametric Oscillation 512
12.4.2.Analytical Treatment 514
12.4.2.1.Parametric Oscillation 516
12.4.2.2.Second-Harmonic Generation 520
12.5.Transformation in Time 523
12.5.1.Pulse Compression 524
12.5.2.Pulse Expansion 529
Problems 530
References 532
Appendixes 535
A.Semiclassical Treatment of the Interaction of Radiation and Matter 535
B.Lineshape Calculation for Collision Broadening 541
C.Simplified Treatment of Amplified Spontaneous Emission 545
References 548
D.Calculation of the Radiative Transition Rates of Molecular Transitions 549
E.Space-Dependent Rate Equations 553
E.1.Four-Level Lasers 553
E.2.Quasi-Three-Level Lasers 559
F.Mode-Locking Theory:Homogeneous Line 563
F.1.Active Mode Locking 563
F.2.Passive Mode Locking 568
References 569
G.Propagation of a Laser Pulse through a Dispersive Medium or a Gain Medium 571
Reference 575
H.Higher-Order Coherence 577
I.Physical Constants and Useful Conversion Factors 581
Answers to Selected Problems 583
Index 595
- 《激光加工实训技能指导理实一体化教程 下》王秀军,徐永红主编;刘波,刘克生副主编 2017
- 《第一性原理方法及应用》李青坤著 2019
- 《计算机组成原理解题参考 第7版》张基温 2017
- 《高等院校保险学专业系列教材 保险学原理与实务》林佳依责任编辑;(中国)牟晓伟,李彤宇 2019
- 《先进激光加工技能实训》肖海兵主编 2019
- 《刑法归责原理的规范化展开》陈璇著 2019
- 《教师教育系列教材 心理学原理与应用 第2版 视频版》郑红,倪嘉波,刘亨荣编;陈冬梅责编 2020
- 《单片机原理及应用》庄友谊 2020
- 《通信电子电路原理及仿真设计》叶建芳 2019
- 《计算机组成原理 第2版》任国林 2018
- 《青青校树》徐伟珠译;(捷克)兹旦内克·斯维拉克 2019
- 《星图 通往天空的旅程》(意)埃琳娜·帕西瓦迪 2019
- 《鲍勃·迪伦》(意)马克·波利佐提著洪兵译 2020
- 《长期价值》高洁译;(英国)内维尔·艾斯戴尔,美戴维·比斯利 2019
- 《艺术中的经典文学形象与故事》(意)弗兰切斯卡·佩莱格里诺,(意)费代里科·皮波莱蒂 2019
- 《给演员的简单手册》(意)达里奥·福,(意)弗兰卡·拉梅(Franca Rame)著 2019
- 《大话西方艺术史》意公子著 2020
- 《奇怪的袜子精灵》翟东钰译;(捷)帕维尔·施鲁特 2019
- 《量子系统的非平衡多体理论》(意)G.斯蒂芬尼茨,(德)R.冯·莱文 2019
- 《CCNA网络安全运营SECFND 210-250认证考试指南》(美)奥马尔·桑托斯(OmarSantos),约瑟夫·穆尼斯(JosephMuniz),(意) 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017