当前位置:首页 > 语言文字
统计学专业英语教程
统计学专业英语教程

统计学专业英语教程PDF电子书下载

语言文字

  • 电子书积分:13 积分如何计算积分?
  • 作 者:王忠玉,宋要武编著
  • 出 版 社:北京:电子工业出版社
  • 出版年份:2016
  • ISBN:9787121289286
  • 页数:381 页
图书介绍:本书主要内容为统计学英语的基本知识,既有基础内容的英语阐述,又包括统计学在各个领域应用的简介。选材新颖:体现初级、中级、高级三个阶梯内容的安排。具体分为三部分:第一部分是英译汉常用的翻译方法和技巧;第二部分是专业英文选读,内容涉及描述统计学、数理统计学(也就是推断统计学)、统计学应用、高等专题四个方面;第三部分是部分参考译文。附录部分提供有关的常用数学知识、图标描述、大数据术语。
《统计学专业英语教程》目录

Part Ⅰ Descriptive Statistics 3

Unit 1 Statistics 3

1.1 What is Statistics? 4

1.1.1 Meanings of Statistics 4

1.1.2 Definition of Statistics 5

1.1.3 Types of Statistics 6

1.1.4 Applications of Statistics 6

1.2 The language of Statistics 9

1.2.1 Population and Sample 9

1.2.2 Kinds of Variables 11

1.3 Measurability and Variability 14

1.4 Data Collection 16

1.4.1 The Data Collection Process 17

1.4.2 Sampling Frame and Elements 18

1.5 Single-Stage Methods 21

1.5.1 Simple Random Sample 21

1.5.2 Systematic Sample 22

1.6 Multistage Methods 25

1.7 Types of Statistical Study 27

1.8 The Process of a Statistical Study 31

Glossary 34

Reading English Materials 35

Passage 1.What is Statistics? 35

Passage 2.From Data to Foresight 35

Problems 36

Unit 2 Descriptive Analysis of Single-Variable Data 40

2.1 Graphs,Pareto Diagrams,and Stem-and-Leaf Displays 41

2.1.1 Qualitative Data 41

2.1.2 Quantitative Data 43

2.2 Frequency Distributions and Histograms 47

2.2.1 Frequency Distribution 47

2.2.2 Histograms 51

2.2.3 Cumulative Frequency Distribution and Ogives 53

2.3 Measures of Central Tendency 55

2.3.1 Finding the Mean 55

2.3.2 Finding the Median 56

2.3.3 Finding the Mode 57

2.3.4 Finding the Midrange 58

2.4 Measures of Dispersion 60

2.4.1 Sample Standard Deviation 62

2.5 Measures of Position 64

2.5.1 Quartiles 64

2.5.2 Percentiles 64

2.5.3 Other Measures of Position 66

2.6 Interpreting and Understanding Standard Deviation 70

2.6.1 The Empirical Rule and Testing for Normality 70

2.6.2 Chebyshev's Theorem 72

Glossary 74

Problems 75

Unit 3 Descriptive Analysis of Bivariate Data 79

3.1 Bivariate Data 80

3.1.1 Two Qualitative Variables 80

3.1.2 One Qualitative and One Quantitative Variable 82

3.1.3 Two Quantitative Variables 83

3.2 Linear Correlation 85

3.2.1 Calculating the Linear Correlation Coefficient,r 86

3.2.2 Causation and Lurking Variables 89

3.3 Linear Regression 91

3.3.1 Line of Best Fit 92

3.3.2 Making Predictions 97

Reading English Materials 99

Passage 1.The First Regression 99

Passage 2.Simpson's Paradox 99

Problems 100

Unit 4 Introduction to Probability 104

4.1 Sample Spaces,Events and Sets 105

4.1.1 Introduction 105

4.1.2 Sample Spaces 105

4.1.3 Events 106

4.1.4 Set Theory 108

4.2 Probability Axioms and Simple Counting Problems 109

4.2.1 Probability Axioms and Simple Properties 109

4.2.2 Interpretations of Probability 111

4.2.3 Classical Probability 112

4.2.4 The Multiplication Principle 113

4.3 Permutations and Combinations 115

4.3.1 Introduction 115

4.3.2 Pemutations 116

4.3.3 Combinations 118

4.3.4 The Difference Between Permutations and Combinations 120

4.4 Conditional Probability and the Multiplication Rule 122

4.4.1 Conditional Probability 122

4.4.2 The Multiplication Rule 123

4.5 Independent Events,Partitions and Bayes Theorem 124

4.5.1 Independence 124

4.5.2 Partitions 125

4.5.3 Law of Total Probability 126

4.5.4 Bayes Theorem 126

4.5.5 Bayes Theorem for Partitions 127

Reading English Materials 130

Passage 1.Probability and Odds 130

Passage 2.The Relationship between Odds and Probability 130

Passage 3.How the Odds Change across the Range of the Probability 131

Problems 132

Unit 5 Discrete Probability Models 134

5.1 Introduction,Mass Functions and Distribution Functions 135

5.1.1 Introduction 135

5.1.2 Probability Mass Functions(PMFs) 136

5.1.3 Cumulative Distribution Functions(CDFs) 137

5.2 Expectation and Variance for Discrete Random Quantities 138

5.2.1 Expectation 138

5.2.2 Variance 139

5.3 Properties of Expectation and Variance 140

5.3.1 Expectation of a Function of a Random Quantity 140

5.3.2 Expectation of a Linear Transformation 140

5.3.3 Expectation of the Sum of Two Random Quantities 141

5.3.4 Expectation of an Independent Product 141

5.3.5 Variance of an Independent Sum 142

5.4 The Binomial Distribution 142

5.4.1 Introduction 142

5.4.2 Bemoulli Random Quantities 143

5.4.3 The Binomial Distribution 143

5.4.4 Expectation and Variance of a Binomial Random Quantity 145

5.5 The Geometric Distribution 146

5.5.1 PMF 146

5.5.2 CDF 147

5.5.3 Useful Series in Probability 148

5.5.4 Expectation and Variance of Geometric Random Quantities 148

5.6 The Poisson Distribution 149

5.6.1 Poisson as the Limit of a Binomial 149

5.6.2 PMF 150

5.6.3 Expectation and Variance of Poisson 151

5.6.4 Sum of Poisson Random Quantities 152

5.6.5 The Poisson Process 152

Reading English Materials 154

Passage 1.The Founder of Modern Statistics—Karl Pearson 154

Passage 2.The Relations of Several Discrete Probability Models 154

Problems 155

Unit 6 Discrete Probability Models 158

6.1 Introduction,PDF and CDF 159

6.1.1 Introduction 159

6.1.2 The Probability Density Function 159

6.1.3 The Distribution Function 160

6.1.4 Median and Quartiles 161

6.2 Properties of Continuous Random Quantities 161

6.2.1 Expectation and variance of continuous random quantities 161

6.2.2 PDF and CDF of a Linear Transformation 162

6.3 The Uniform Distribution 163

6.4 The Exponential Distribution 165

6.4.1 Definition and Properties 165

6.4.2 Relationship with the Poisson Process 166

6.4.3 The Memoryless Property 167

6.5 The Normal Distribution 168

6.5.1 Definition 168

6.5.2 Properties 168

6.6 The Standard Normal Distribution 169

6.6.1 Properties of the Standard Normal Distribution 170

6.6.2 Finding Area to The Right of z=0 171

6.6.3 Finding Areain The Right Tail of a Normal Curve 171

6.6.4 Finding Area to the Left of a Positive z Value 172

6.6.5 Finding Area from a Negative z to z=0 172

6.6.6 Finding Area in the Left Tail of a Normal Curve 172

6.6.7 Finding Area from A Negative z to a Positive z 172

6.6.8 Finding Area Between two z Values of the Same Sign 173

6.6.9 Finding z-Scores Associated with a Percentile 173

6.6.10 Finding z-scores that Bound an Area 174

6.7 Applications of Normal Distributions 175

6.7.1 Probabilities and Normal Curves 175

6.7.2 Using the Normal Curve and z 176

6.8 Specific z-score 178

6.8.1 Visual Interpretation of z(a) 179

6.8.2 Determining Corresponding z Values for z(a) 179

6.8.3 Determining z-scores for Bounded Areas 180

6.9 Normal Approximation of Binomial and Poisson 181

6.9.1 Normal Approximation of the Binomial 181

6.9.2 Normal Approximation of the Poisson 182

Problems 182

Unit 7 Sampling Distributions and CLT 187

7.1 Sampling Distributions 188

7.1.1 Forming a Sampling Distribution of Means 188

7.1.2 Creating a Sampling Distribution of Sample Means 189

7.2 The Sampling Distribution of Sample Means 192

7.2.1 Central Limit Theorem 193

7.2.2 Constructing a Sampling Distribution of Sample Means 194

7.3 Application of the Sampling Distribution of Sample Means 199

7.3.1 Converting?Information into z-scores 199

7.3.2 Distribution of?and Increasing Individual Sample Size 200

7.4 Advanced Central Limit Theorem 202

7.4.1 Central Limit Theorem(Sample Mean) 203

7.4.2 Central Limit Theorem(Sample Sum) 203

Problems 207

Part Ⅱ Inferential Statistics 210

Unit 8 Introduction to Statistical Inferences 210

8.1 Point Estimation and Interval Estimation 211

8.1.1 Point Estimate 211

8.1.2 Interval Estimate 212

8.2 Estimation of Meanμ(σKnown) 214

8.2.1 The Principle of Constructing a Confidence Interval 214

8.2.2 Applications 216

8.2.3 Sample Size and Confidence Interval 217

8.3 Introduction to Hypothesis Testing 220

8.3.1 Null Hypothesis and Alternative Hypothesis 220

8.3.2 Four Possible Outcomes in a Hypothesis Test 222

8.4 Formulating the Statistical Null and Alternative Hypotheses 226

8.4.1 Writing Null and Alternative Hypothesis in One-Tailed Situation 226

8.4.2 Writing Null and Alternative Hypothesis in Two-Tailed Situation 227

8.5 Hypothesis Test of Meanμ(σKnown):A Probability-Value Approach 228

8.5.1 One-Tailed Hypothesis Test Using the p-Value Approach 229

8.5.2 Two-Tailed Hypothesis Test Using the p-Value Approach 233

8.5.3 Evaluating the p-Value Approach 234

8.6 Hypothesis Test of Meanμ(σKnown):A Classical Approach 235

8.6.1 One-Tailed Hypothesis Test Using the Classical Approach 236

8.6.2 Two-Tailed Hypothesis Test Using the Classical Approach 239

Problems 241

Unit 9 Inferences Involving One Population 246

9.1 Inferences about the Meanμ(σUnknown) 247

9.1.1 Using the t-Distribution Table 249

9.1.2 Confidence Interval Procedure 251

9.1.3 Hypothesis-Testing Procedure 252

9.2 Inferences about the Binomial Probability of Success 258

9.2.1 Confidence Interval Procedure 259

9.2.2 Determining Sample Size 261

9.2.3 Hypothesis-Testing Procedure 263

9.3 Inferences about the Variance and Standard Deviation 268

9.3.1 Critical Values of Chi-Square 269

9.3.2 Hypothesis-Testing Procedure 270

Problems 279

Unit 10 Inferences Involving Two Populations 284

10.1 Dependent and Independent Samples 285

10.2 Inferences Concerning the Mean Difference Using Two Dependent Samples 287

10.2.1 Procedures and Assumptions for Inferences Involving Paired Data 287

10.2.2 Confidence Interval Procedure 288

10.2.3 Hypothesis-Testing Procedure 290

10.3 Inferences Conceming the Difference between Means Using Two Independent Samples 294

10.3.1 Confidence Interval Procedure 295

10.3.2 Hypothesis-Testing Procedure 297

10.4 Inferences Concerning the Difference between Proportions 301

10.4.1 Confidence Interval Procedure 303

10.4.2 Hypothesis-Testing Procedure 304

10.5 Inferences Concerning the Ratio ofVariances Using Two Independent Samples 308

10.5.1 Writing for the Equality of Variances 308

10.5.2 Using the F-Distribution 309

10.5.3 One-Tailed Hypothesis Test for the Equality of Variances 310

10.5.4 Critical F-Values for One-and Two-Tailed Tests 313

Problems 315

Unit 11 An Introduction to Simple Regression 321

11.1 Regression as a Best Fitting Line 322

11.1.1 Regression as a Best Fitting Line 322

11.1.2 Errors and Residuals 324

11.2 Interpreting OLS Estimates 326

11.3 Fitted Values and R2:Measuring the Fit of a Regression Model 328

11.4 Nonlinearity in Regression 331

Reading English Materials 335

Problems 336

Part Ⅲ Statistical Methods and Data Science 339

Unit 12 Statistics and Data Science 339

12.1 Statistics and Data Science(Ⅰ) 340

12.1.1 What is Data Science 340

12.1.2 Statistics and Data Science 340

12.2 Statistics and Data Science(Ⅱ) 343

12.2.1 Statistics as Part of Data Science 343

12.2.2 The Modern Statistical Analysis Process 344

12.2.3 Statistician and Data Scientist 345

12.3 Statistical Thinking 348

12.3.1 What is Statistical Thinking 348

12.3.2 The Two Cultures of Statistical Modeling 348

12.3.3 A New Research Community 350

12.4 Distinguishing Analytics,Business Intelligence,Data Science 352

12.4.1 Analytics 352

12.4.2 Business Intelligence 355

12.4.3 Data Science 356

Reading English Materials 359

Problems 361

Commonly Used Statistical Terms 362

Appendix A Commonly Used Statistical Tables 367

Appendix B Summary of Univariate Descriptive Statistics and Graphs for the Four Level of Measurement 379

Appendix C Order of Magnitude of Data 380

References 381

相关图书
作者其它书籍
返回顶部