纳米相和纳米结构材料应用 2 手册 英文版PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:王中林主编
- 出 版 社:北京:清华大学出版社
- 出版年份:2002
- ISBN:7302057354
- 页数:330 页
10 Nanomechanism of the Hexagonal-Cubic Phase Transition in Boron Nitride under High Pressure at High Temperature 1
10.1 Introduction 1
10.2 Processing Method to Get c-BN 2
10.3 Characterization Method 3
10.4 Phase Transition of Boron Nitride 4
10.4.1 Nanostructure of the Starting Material 4
10.4.2 Phases and Nanostructures Appearing during the Hexagonal-Cubic Transition 6
10.5 Mechanism of Hexagonal-Cubic Transition 16
10.5.1 Model for the Transition Mechanism 16
10.5.3 Facilitation of Synthesis of c-BN by Mechanochemical Effect 19
10.5.2 Atomic Movement during the Conversion from w-to c-BN 19
10.6 Prospect 22
10.7 Conclusions 22
References 24
11 Nanomaterials for Energy Storage:Batteries and Fuel Cells 26
11.1 General Overview of Batteries and Fuel Cells 26
11.1.1 Introduction 26
11.1.2 An Overview of Batteries 27
11.1.3 An Overview of Fuel Cells 29
11.1.4 Importance of Nanomaterials in Batteries and Fuel Cells 33
11.2 Batteries and Nanomaterials 34
11.2.1 Classifications of Advanced Batteries 34
11.2.2 Major Components of Batteries 37
11.2.3 Applications of Nanomaterials in Advanced Batteries 39
11.2.4 Most Recent Developments 46
11.3 Fuel Cells and Nanomaterials 46
11.3.1 Classifications of Fuel Cell Systems 46
11.3.2 Major Components and Nanomaterials in Fuel Cells 49
11.3.3 Applications of Nanomaterials in Fuel Cells 50
11.3.4 Summary 60
11.4 Conclusions 60
References 61
12.1 Introduction 69
12 Nanocomposites 69
12.2 General Features of Nanocomposites 74
12.2.1 Physical Sensitivity:Three Effects of Nanoparticles on Material Properties 74
12.2.2 Chemical Reactivity 75
12.2.3 Promising Improvements in Nanocomposites 76
12.2.4 Origin of Nanophases and Generating Stages 77
12.3 Ceramic-Based Nanocomposites 79
12.3.1 Strength Improvement of Ceramic-Based Nanocomposites 80
12.3.2 Toughening Effect of Nanoceramic Composites 84
12.3.3 Improvements of Nanoceramic Composites on Hardness and Wear 86
12.3.4 Superplasticity of Ceramic Nanocomposites 86
12.3.5 Improvement of Nanoceramic Composites on Creep 88
12.4 Metallic-Based Nanocomposites 89
12.3.6 Ceramic-Based Nanometallic Composites 89
12.5 Polymer-Based Nanocomposites 91
12.6 Summaries of Nanocomposites 93
References 94
13 Growth and Properties of Single-Walled Carbon Nanotubes 96
13.1 Introduction 96
13.2 Synthetic Strategies for Various Nanotube Architectures 97
13.2.1 Chemical Vapor Deposition 97
13.2.2 Growth of Self-oriented Multi-Walled Nanotubes 99
13.2.3 Enable the Growth of Single-Walled Nanotubes by CVD 100
13.2.5 Growth of lsolated Single-Walled Nanotubes on Controlled Surface Sites 102
13.2.4 Growth Mechanism of SWNT 102
13.2.6 Growth of Suspended SWNTs With Directed Orientations 104
13.3 Physics in Atomically Well-Defined Nanowires 106
13.3.1 Integrated Circuits of Individual Single-Walled Nanotubes 106
13.3.2 Electron Transport Properties of Metallic Nanotubes 107
13.3.3 Electron Transport Properties of Semiconducting Nanotubes 110
13.3.4 Electron Transport Properties of Semiconducting Nanotubes with Small Band Gaps 114
13.4 Integrated Nanotube Devices 121
13.4.1 Nanotube Molecular Transistors With High Gains 121
13.5 Conclusions 123
References 125
14.2 Theoretical Prediction 128
14.1 Introduction 128
14 Nanomaterials from Light-Element Composites 128
14.2.1 Empirical Model 129
14.2.2 First-Principles Study 130
14.3 Synthesis by Chemical Vapor Deposition(CVD) 131
14.3.1 Bias-Assisted Hot Filament CVD 132
14.3.2 Electron Cyclotron Resonance Microwave Plasma-Assisted CVD(MPCVD) 133
14.4 Uniform Size-Controlled Nanocrystalline Diamond Films 134
14.4.1 Deposition with CN4/N2 Precursor 135
14.4.2 Influence of Additional H2 on Microstructure 139
14.4.3 Nitrogen Incorporation 141
14.4.4 Surface Stable Growth Model 141
14.4.5 Field Electron Emission and Transport Tunneling Mechanism 142
14.5 Nanocrystalline Carbon Nitride Films 144
14.5.1 αandβStructures 145
14.5.2 Tetragonal Structure 146
14.5.3 Monoclinic Structure 147
14.5.4 Fullerene-like Structure 147
14.5.5 Carbon Nitride Diamond Silicon Layers 148
14.5.6 Physical and Chemical Properties 149
14.6 Nanocrystalline Silicon Carbonitride Films 150
14.6.1 Deposition With Nitrogen and Methane 151
14.6.2 Deposition with Nitrogen.Methane and Hydrogen:Influence of Hydrogen Flow Ratio 154
14.6.3 Lattice-Matched Growth Model 155
14.7.1 Morphology and Composition 156
14.7 Turbostratic Boron Carbonitride Films 156
14.7.2 Turbostratic Structure 157
14.7.3 Raman and Photoluminescence 159
14.7.4 Field Electron Emission 160
14.8 Polymerized Nitrogen-Incorporated Carbon Nanobells 161
14.8.1 Polymerized Nanobell Structure 161
14.8.2 Chemical Separation and Application 163
14.8.3 Wall-Side Field Emission Mechanism 164
14.9 Highly Oriented Boron Carbonitride Nanofibers 165
14.9.1 Microstructure and Composition 165
14.10 Conclusions 167
14.9.2 Field Electron Emission 167
References 169
15 Self-Assembled Ordered Nanostructures 174
15.1 Ordered Self-Assembled Nanocrystals 174
15.1.1 Processing of Nanocrystals for Self-Assembly 177
15.1.2 Technical Aspects of Self-Assembling 182
15.1.3 Structure of the Nanocrystal Self-Assembly 185
15.1.4 Properties of the Nanocrystal Self-Assembly 190
15.2 Ordered Self-Assembly of Mesoporous Materials 195
15.2.1 Processing 196
15.2.2 The Formation Mechanisms 197
15.2.3 Applications 199
15.2.4 Mesoporous Materials of Transition Metal Oxides 203
15.3 Hierarchically Structured Nanomaterials 205
15.4 Summary 207
References 207
16 Molecularly Organized Nanostructural Materials 211
16.1 Introduction 211
16.1.1 Nanostructural Materials in Energy Sciences 211
16.1.2 Nanophase Materials in Environmental and Health Sciences 212
16.1.3 Molecularly Organized Nanostructural Materials 213
16.2 Molecularly Directed Nucleation and Growth.and Matrix Mediated Nanocomposites 213
16.2.1 Molecularly Directed Nanoscale Materials in Nature 213
16.2.2 Directed Nucleation and Growth of Thin Films 214
16.2.3 Matrix Mediated Nanocomposites 217
16.3 Surfactant Directed Hybrid Nanoscale Materials 221
16.3.1 Ordered Nanoporous Materials 222
16.3.2 Hybrid Nanoscale Materials 227
16.4 Summary and Prospects 233
References 234
17 Nanostructured Bio-inspired Materials 237
17.1 Introduction 237
17.2 Case Study Ⅰ:Teeth 240
17.2.1 Control over Mineralization at Nanometer Scale 241
17.2.2 Hierarchical Structure in Biological Materials 244
17.3 Case Study Ⅱ:Mesoscopic Silica Films 246
17.3.1 Hierarchical Film Structure 248
17.3.2 Towards Control of the Properties 253
17.4 Conclusion 254
References 254
18 Nanophase Metal Oxide Materials for Electrochromic Displays 257
18.1 Introduction 257
18.2 Basic Concepts in Electrochromism 258
18.2.1 Electrochromic Display Device 258
18.2.2 Electrochromic Materials 260
18.2.3 Perceived Color and Contrast Ratio 261
18.2.4 Coloration Efficiency and Response Time 262
18.2.5 Write-Erase Efficiency and Cycle Life 262
18.3 Nanophase Metal Oxide Electrochromic Materials 263
18.3.1 Synthesis of Supported ATO Nanocrystallites 264
18.3.2 Characterization of Supported ATO Nanocrystallites 266
18.4 Construction of Printed.Flexible Displays Using Interdigitated Electrodes 268
18.4.1 Design Strategy 268
18.4.2 Materials Selection 270
18.4.3 Display Examples 272
18.5 Contrast of Printed Electrochromic Displays Using ATO Nanophase Materials 274
18.5.1 Effect of Antimony Doping on Contrast Ratio 275
18.5.2 Effect of Annealing Temperature on Contrast Ratio 281
18.5.3 Other Factors That Affect the Contrast Ratio 285
References 289
18.6 Summary 289
19 Engineered Microstructures for Nonlinear Optics 292
19.1 Introduction 292
19.2 Preparation of DSLs 293
19.2.1 Preparation of DSLs by Modulation of Ferroelectric Domains 293
19.2.2 Preparation of DSL by Using Photorefractive Effect 296
19.3 Outline of the Nonlinear Optics 297
19.4 Wave Vector Conservation 298
19.5 Nonlinear Optical Frequency Conversion in 1-D Periodic DSLs 301
19.6 Nonlinear Optical Frequency Conversion in 1-D QPDSLs 303
19.6.1 The Construction of QPDSL 304
19.6.2 Theoretical Treatment of the Nonlinear Optical Processes in QPDSLs 305
19.6.3 The Effective Nonlinear Optical Coefficients 309
19.6.4 QPM Multiwavelength SHG 309
19.6.5 Direct THG 310
19.7 Optical Bistability in a 2-D DSL 311
19.7.1 Bloch Wave Approach 312
19.7.2 Four-Path Switch:Linear Case 315
19.7.3 A New Type of Optical Bistability Mechanism:Nonlinear Case with One Incident Wave 316
19.7.4 A New Type of Optical Bistability Mechanism:Nonlinear Case With Two Incident Waves 319
19.8 Outlook 320
References 322
Index 329
- 《联吡啶基钌光敏染料的结构与性能的理论研究》李明霞 2019
- 《异质性条件下技术创新最优市场结构研究 以中国高技术产业为例》千慧雄 2019
- 《卓有成效的管理者 中英文双语版》(美)彼得·德鲁克许是祥译;那国毅审校 2019
- 《AutoCAD 2018自学视频教程 标准版 中文版》CAD/CAM/CAE技术联盟 2019
- 《跟孩子一起看图学英文》张紫颖著 2019
- 《柏里曼人体结构绘画教学描摹本 第2册 头手足结构》杨建飞主编 2019
- 《AutoCAD机械设计实例精解 2019中文版》北京兆迪科技有限公司编著 2019
- 《认知语言学视野的抽象方位结构研究》曹爽著 2019
- 《复分析 英文版》(中国)李娜,马立新 2019
- 《纳米颗粒复合电刷镀技术及应用》董世运著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019