当前位置:首页 > 工业技术
纳米相和纳米结构材料应用  2  手册  英文版
纳米相和纳米结构材料应用  2  手册  英文版

纳米相和纳米结构材料应用 2 手册 英文版PDF电子书下载

工业技术

  • 电子书积分:12 积分如何计算积分?
  • 作 者:王中林主编
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2002
  • ISBN:7302057354
  • 页数:330 页
图书介绍:纳米相和纳米结构材料是纳米科学和纳米技术的基础,本书集中介绍和阐述了纳米材料在各个领域中的应用以及最新进展。
《纳米相和纳米结构材料应用 2 手册 英文版》目录

10 Nanomechanism of the Hexagonal-Cubic Phase Transition in Boron Nitride under High Pressure at High Temperature 1

10.1 Introduction 1

10.2 Processing Method to Get c-BN 2

10.3 Characterization Method 3

10.4 Phase Transition of Boron Nitride 4

10.4.1 Nanostructure of the Starting Material 4

10.4.2 Phases and Nanostructures Appearing during the Hexagonal-Cubic Transition 6

10.5 Mechanism of Hexagonal-Cubic Transition 16

10.5.1 Model for the Transition Mechanism 16

10.5.3 Facilitation of Synthesis of c-BN by Mechanochemical Effect 19

10.5.2 Atomic Movement during the Conversion from w-to c-BN 19

10.6 Prospect 22

10.7 Conclusions 22

References 24

11 Nanomaterials for Energy Storage:Batteries and Fuel Cells 26

11.1 General Overview of Batteries and Fuel Cells 26

11.1.1 Introduction 26

11.1.2 An Overview of Batteries 27

11.1.3 An Overview of Fuel Cells 29

11.1.4 Importance of Nanomaterials in Batteries and Fuel Cells 33

11.2 Batteries and Nanomaterials 34

11.2.1 Classifications of Advanced Batteries 34

11.2.2 Major Components of Batteries 37

11.2.3 Applications of Nanomaterials in Advanced Batteries 39

11.2.4 Most Recent Developments 46

11.3 Fuel Cells and Nanomaterials 46

11.3.1 Classifications of Fuel Cell Systems 46

11.3.2 Major Components and Nanomaterials in Fuel Cells 49

11.3.3 Applications of Nanomaterials in Fuel Cells 50

11.3.4 Summary 60

11.4 Conclusions 60

References 61

12.1 Introduction 69

12 Nanocomposites 69

12.2 General Features of Nanocomposites 74

12.2.1 Physical Sensitivity:Three Effects of Nanoparticles on Material Properties 74

12.2.2 Chemical Reactivity 75

12.2.3 Promising Improvements in Nanocomposites 76

12.2.4 Origin of Nanophases and Generating Stages 77

12.3 Ceramic-Based Nanocomposites 79

12.3.1 Strength Improvement of Ceramic-Based Nanocomposites 80

12.3.2 Toughening Effect of Nanoceramic Composites 84

12.3.3 Improvements of Nanoceramic Composites on Hardness and Wear 86

12.3.4 Superplasticity of Ceramic Nanocomposites 86

12.3.5 Improvement of Nanoceramic Composites on Creep 88

12.4 Metallic-Based Nanocomposites 89

12.3.6 Ceramic-Based Nanometallic Composites 89

12.5 Polymer-Based Nanocomposites 91

12.6 Summaries of Nanocomposites 93

References 94

13 Growth and Properties of Single-Walled Carbon Nanotubes 96

13.1 Introduction 96

13.2 Synthetic Strategies for Various Nanotube Architectures 97

13.2.1 Chemical Vapor Deposition 97

13.2.2 Growth of Self-oriented Multi-Walled Nanotubes 99

13.2.3 Enable the Growth of Single-Walled Nanotubes by CVD 100

13.2.5 Growth of lsolated Single-Walled Nanotubes on Controlled Surface Sites 102

13.2.4 Growth Mechanism of SWNT 102

13.2.6 Growth of Suspended SWNTs With Directed Orientations 104

13.3 Physics in Atomically Well-Defined Nanowires 106

13.3.1 Integrated Circuits of Individual Single-Walled Nanotubes 106

13.3.2 Electron Transport Properties of Metallic Nanotubes 107

13.3.3 Electron Transport Properties of Semiconducting Nanotubes 110

13.3.4 Electron Transport Properties of Semiconducting Nanotubes with Small Band Gaps 114

13.4 Integrated Nanotube Devices 121

13.4.1 Nanotube Molecular Transistors With High Gains 121

13.5 Conclusions 123

References 125

14.2 Theoretical Prediction 128

14.1 Introduction 128

14 Nanomaterials from Light-Element Composites 128

14.2.1 Empirical Model 129

14.2.2 First-Principles Study 130

14.3 Synthesis by Chemical Vapor Deposition(CVD) 131

14.3.1 Bias-Assisted Hot Filament CVD 132

14.3.2 Electron Cyclotron Resonance Microwave Plasma-Assisted CVD(MPCVD) 133

14.4 Uniform Size-Controlled Nanocrystalline Diamond Films 134

14.4.1 Deposition with CN4/N2 Precursor 135

14.4.2 Influence of Additional H2 on Microstructure 139

14.4.3 Nitrogen Incorporation 141

14.4.4 Surface Stable Growth Model 141

14.4.5 Field Electron Emission and Transport Tunneling Mechanism 142

14.5 Nanocrystalline Carbon Nitride Films 144

14.5.1 αandβStructures 145

14.5.2 Tetragonal Structure 146

14.5.3 Monoclinic Structure 147

14.5.4 Fullerene-like Structure 147

14.5.5 Carbon Nitride Diamond Silicon Layers 148

14.5.6 Physical and Chemical Properties 149

14.6 Nanocrystalline Silicon Carbonitride Films 150

14.6.1 Deposition With Nitrogen and Methane 151

14.6.2 Deposition with Nitrogen.Methane and Hydrogen:Influence of Hydrogen Flow Ratio 154

14.6.3 Lattice-Matched Growth Model 155

14.7.1 Morphology and Composition 156

14.7 Turbostratic Boron Carbonitride Films 156

14.7.2 Turbostratic Structure 157

14.7.3 Raman and Photoluminescence 159

14.7.4 Field Electron Emission 160

14.8 Polymerized Nitrogen-Incorporated Carbon Nanobells 161

14.8.1 Polymerized Nanobell Structure 161

14.8.2 Chemical Separation and Application 163

14.8.3 Wall-Side Field Emission Mechanism 164

14.9 Highly Oriented Boron Carbonitride Nanofibers 165

14.9.1 Microstructure and Composition 165

14.10 Conclusions 167

14.9.2 Field Electron Emission 167

References 169

15 Self-Assembled Ordered Nanostructures 174

15.1 Ordered Self-Assembled Nanocrystals 174

15.1.1 Processing of Nanocrystals for Self-Assembly 177

15.1.2 Technical Aspects of Self-Assembling 182

15.1.3 Structure of the Nanocrystal Self-Assembly 185

15.1.4 Properties of the Nanocrystal Self-Assembly 190

15.2 Ordered Self-Assembly of Mesoporous Materials 195

15.2.1 Processing 196

15.2.2 The Formation Mechanisms 197

15.2.3 Applications 199

15.2.4 Mesoporous Materials of Transition Metal Oxides 203

15.3 Hierarchically Structured Nanomaterials 205

15.4 Summary 207

References 207

16 Molecularly Organized Nanostructural Materials 211

16.1 Introduction 211

16.1.1 Nanostructural Materials in Energy Sciences 211

16.1.2 Nanophase Materials in Environmental and Health Sciences 212

16.1.3 Molecularly Organized Nanostructural Materials 213

16.2 Molecularly Directed Nucleation and Growth.and Matrix Mediated Nanocomposites 213

16.2.1 Molecularly Directed Nanoscale Materials in Nature 213

16.2.2 Directed Nucleation and Growth of Thin Films 214

16.2.3 Matrix Mediated Nanocomposites 217

16.3 Surfactant Directed Hybrid Nanoscale Materials 221

16.3.1 Ordered Nanoporous Materials 222

16.3.2 Hybrid Nanoscale Materials 227

16.4 Summary and Prospects 233

References 234

17 Nanostructured Bio-inspired Materials 237

17.1 Introduction 237

17.2 Case Study Ⅰ:Teeth 240

17.2.1 Control over Mineralization at Nanometer Scale 241

17.2.2 Hierarchical Structure in Biological Materials 244

17.3 Case Study Ⅱ:Mesoscopic Silica Films 246

17.3.1 Hierarchical Film Structure 248

17.3.2 Towards Control of the Properties 253

17.4 Conclusion 254

References 254

18 Nanophase Metal Oxide Materials for Electrochromic Displays 257

18.1 Introduction 257

18.2 Basic Concepts in Electrochromism 258

18.2.1 Electrochromic Display Device 258

18.2.2 Electrochromic Materials 260

18.2.3 Perceived Color and Contrast Ratio 261

18.2.4 Coloration Efficiency and Response Time 262

18.2.5 Write-Erase Efficiency and Cycle Life 262

18.3 Nanophase Metal Oxide Electrochromic Materials 263

18.3.1 Synthesis of Supported ATO Nanocrystallites 264

18.3.2 Characterization of Supported ATO Nanocrystallites 266

18.4 Construction of Printed.Flexible Displays Using Interdigitated Electrodes 268

18.4.1 Design Strategy 268

18.4.2 Materials Selection 270

18.4.3 Display Examples 272

18.5 Contrast of Printed Electrochromic Displays Using ATO Nanophase Materials 274

18.5.1 Effect of Antimony Doping on Contrast Ratio 275

18.5.2 Effect of Annealing Temperature on Contrast Ratio 281

18.5.3 Other Factors That Affect the Contrast Ratio 285

References 289

18.6 Summary 289

19 Engineered Microstructures for Nonlinear Optics 292

19.1 Introduction 292

19.2 Preparation of DSLs 293

19.2.1 Preparation of DSLs by Modulation of Ferroelectric Domains 293

19.2.2 Preparation of DSL by Using Photorefractive Effect 296

19.3 Outline of the Nonlinear Optics 297

19.4 Wave Vector Conservation 298

19.5 Nonlinear Optical Frequency Conversion in 1-D Periodic DSLs 301

19.6 Nonlinear Optical Frequency Conversion in 1-D QPDSLs 303

19.6.1 The Construction of QPDSL 304

19.6.2 Theoretical Treatment of the Nonlinear Optical Processes in QPDSLs 305

19.6.3 The Effective Nonlinear Optical Coefficients 309

19.6.4 QPM Multiwavelength SHG 309

19.6.5 Direct THG 310

19.7 Optical Bistability in a 2-D DSL 311

19.7.1 Bloch Wave Approach 312

19.7.2 Four-Path Switch:Linear Case 315

19.7.3 A New Type of Optical Bistability Mechanism:Nonlinear Case with One Incident Wave 316

19.7.4 A New Type of Optical Bistability Mechanism:Nonlinear Case With Two Incident Waves 319

19.8 Outlook 320

References 322

Index 329

返回顶部