当前位置:首页 > 工业技术
纳米相和纳米结构材料-结构和性能表征手册
纳米相和纳米结构材料-结构和性能表征手册

纳米相和纳米结构材料-结构和性能表征手册PDF电子书下载

工业技术

  • 电子书积分:13 积分如何计算积分?
  • 作 者:王中林,刘义,张泽主编
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2002
  • ISBN:7302054428
  • 页数:388 页
图书介绍:
上一篇:电机结构学下一篇:C++ Gotchas 影印本
《纳米相和纳米结构材料-结构和性能表征手册》目录

1 X-ray and Neutron Scattering 1

1.1 Introduction 1

1.2 X-ray and Neutron Diffraction 4

1.3 Inelastic Neutron Scattering 14

1.4 Small Angle Scattering 21

1.5 Concluding Remarks 24

References 25

2 Transmission Electron Microscopy and Spectroscopy 29

2.1 Major Components of a Transmission Electron Microscope 29

2.2 Atomic Resolution Lattice Imaging of Crystalline Specimens 31

2.2.1 Phase Contrast 31

2.2.2 Abbe’s Imaging Theory 32

2.2.3 Image Interpretation of Very Thin Samples 34

2.2.4 Image Simulation 34

2.3 Faceted Shapes of Nanocrystals 37

2.3.1 Polyhedral Shapes of Nanoparticles 37

2.3.2 Twinning Structure and Stacking Faults 41

2.3.3 Decahedral and lcosahedral Particles 42

2.3.4 Nucleation and Growth of Nanoparticles 43

2.4 Electron Holography 46

2.5 Lorentz Microscopy 48

2.5.1 Principle of Lorentz Microscopy 48

2.5.3 Fresnel Lorentz Microscopy 49

2.5.2 Elimination/Reduction of Magnetic Field from Objective Lens 49

2.5.4 Foucault Lorentz Microscopy 50

2.5.5 Differential Phase Contrast Mode of Lorentz Microscopy in STEM 51

2.6 Nanodiffraction 52

2.6.1 Optics for Nanodiffraction 53

2.6.2 Experimental Procedures to Obtain a Nanodiffraction Pattern 53

2.6.3 Some Applications 54

2.7 In situ TEM and Nanomeasurements 61

2.7.1 Thermodynamic Properties of Nanocrystals 62

2.7.2 Nanomeasurement of Electrical Transport in Quantum Wires 68

2.7.3 Nanomeasurement of Mechanical Properties of Fiber-Like Structures 70

2.7.4 Femtogram Nanobalance of a Single Fine Particle 71

2.7.5 Electron Field Emission from a Single Carbon Nanotube 72

2.8 Electron Energy Loss Spectroscopy of Nanoparticles 75

2.8.1 Valence Excitation Spectroscopy 75

2.8.2 Quantitative Nanoanalysis 77

2.8.3 Near Edge Fine Structure and Bonding in Transition Metal Oxides 79

2.8.4 Doping of Light Elements in Nanostructures 81

2.9 Energy-Filtered Electron Imaging 85

2.9.1 Chemical Imaging of Giant Magnetoresistive Multilayers 85

2.9.2 Imaging of Spin Valves 89

2.9.3 Mapping Valence States of Transition Metals 91

2.10 Energy Dispersive X-ray Microanalysis(EDS) 93

2.11 Summary 94

References 95

3 Scanning Electron Microscopy 99

3.1 Introduction 99

3.2 Basic Principals of Scanning Electron Microscopy 100

3.2.1 Main Parameters of Electron Optics 101

3.2.2 The Minimum Attainable Beam Diameter 102

3.3 Contrast Formation and Interpretation 103

3.4 Secondary Electron Detectors 111

3.4.1 Everhart-Thornley Detector 111

3.4.2 In-iens Secondary Electron Detector 112

3.5 Dedicated Detectors 114

3.5.1 Solid-State Diode Detector 114

3.5.2 Scintillator Backscattered Electron Detector 115

3.5.3 BSE-to-SE Conversion Detectors 115

3.5.4 Multi-detector System 115

3.5.5 Electron Backscattered Diffraction(EBSD) 116

3.5.6 Magnetic Contrast 117

3.5.7 X-ray Spectrometers 118

3.6 Conclusions 120

References 121

4.1 Overview 124

4 Scanning Probe Microscopy 124

4.2 Scanning Tunneling Microscopy 125

4.2.1 Introduction 125

4.2.2 STM Studies on Metals 127

4.2.3 STM Studies on Semiconducting Surfaces 130

4.2.4 Organic Molecules Studied by STM 135

4.3 Atomic Force Microscopy 138

4.3.1 Introduction 138

4.3.2 The Force Sensor 139

4.3.3 lllustration of AFM Applications 141

4.3.4 Force Spectrum Analysis 144

4.3.5 Lateral Force Microscopy 146

4.3.6 Force Microscope operating in Non-contact Mode 147

4.3.7 Force Microscope Operating in Tapping Mode 148

4.3.8 Magnetic Force Microscopy 150

4.4 Ballistic-Electron-Emission Microscopy 152

4.4.1 The Principle of BEEM 152

4.4.2 BEEM Experiments 154

4.4.3 Ballistic-Hole Spectroscopy of Interfaces 156

4.5 Applications of STM and BEEM in Surface and Interface Modifications 159

4.5.1 Surface Nanofabrication with STM 160

4.5.2 Single Atom Manipulation 164

4.5.3 Interfacial Modification with BEEM 166

4.6 Concluding Remarks 167

References 168

5 Optical Spectroscopy 172

5.1 Introduction 172

5.2 Nanoclusters and Nanocrystals 173

5.2.1 Absorption and Photoluminescence Spectroscopic Evidence for Quantum Confinement 174

5.2.2 Raman and FTIR Studies on the QDs and Its Supramolecular Assemblies 181

5.2.3 High Resolution Spectroscopy of Individual Quantum Dots 184

5.2.4 Ultrafast Spectroscopy in Quantum Confined Structures 192

5.3.1 Processing on the Nanostructures 197

5.3 The Control of Nanostructures by Spectroscopic Diagnosis 197

5.3.2 Spectroscopic Diagnosis 201

5.3.3 Photovoltage Spectroscopy of Surface and Interface 212

References 215

6 Dynamic Properties of Nanoparticles 219

6.1 Introduction 219

6.2 Experimental Techniques 220

6.2.1 Synthesis of Semiconductor Nanoparticles 220

6.2.2 Synthesis of Metal Nanoparticles 222

6.2.3 Characterization of Nanoparticles 222

6.2.4 Dynamics Measurements with Time-Resolved Techniques 223

6.3.1 Theoretical Considerations 225

6.3 Dynamic Properties of Semiconductor Nanoparticles 225

6.3.2 CdS,CdSe and Related Systems 228

6.3.3 Metal Oxide Nanoparticles:TiO2,Fe2O3,ZnO,SnO2 231

6.3.4 Other Semiconductor Nanoparticle Systems:Si,Agl,Ag2S,PbS 234

6.3.5 Nanoparticles of Layered Semiconductors:MoS2,Pbl2 235

6.3.6 Effects of Particle Surface,Size and Shape 237

6.4 Dynamic Properties of Metal Nanoparticles 238

6.4.1 Background and Theoretical Considerations 238

6.4.2 Gold(Au)Nanoparticles 240

6.4.3 Other Metal Nanoparticles:Ag,Cu,Sn,Ga and Pt 242

6.4.4 Effects of Surface,Size and Shape 242

6.5 Summary and Prospects 243

References 244

7 Magnetic Characterization 252

7.1 Introduction 252

7.2 SQUID Magnetometry 255

7.3 M(?)ssbauer Spectroscopy 262

7.4 Neutron Powder Diffraction 273

7.5 Lorentz Microscopy 277

7.6 Summary 281

References 281

8 Electrochemical Characterization 283

8.1 Introduction 283

8.2.1 Electrodeposition and Electrophoretic Deposition 285

8.2 Preparation of Nanostructured Electrode 285

8.2.2 Formation of Nanoparticles in Polymers 287

8.2.3 Electrochemical Self-Assembly 288

8.2.4 Mesoporous Electrodes 289

8.2.5 Composite Electrodes Consisting of Nanoparticles 291

8.2.6 Powder Microelectrode 291

8.3 Principles of Electrochemical Techniques 293

8.3.1 Impedance Spectroscopy 293

8.3.2 Potential Sweep Method 300

8.3.3 Potential Step Method 304

8.3.4 Controlled-Current Techniques 307

8.3.5 Electrochemical Quartz Crystal Microbalance 312

8.4 Application to Nanostructured Electrodes 316

8.4.1 Characterizing the Reversibility of Battery Electrode Materials 316

8.4.2 Characterizing the Transport Properties 319

8.5 Summary 320

References 321

9 Mechanical Property Characterization 326

9.1 Elasticity Study of Metal Nanometer Films 326

9.1.1 Vibrating Reed Method 326

9.1.2 Elasticity Measurements on Ag and Al Films 328

9.1.3 Supermodulus Effect in Ag/Pd Multilayers 332

9.2 Mechanical Behavior of High-Density Nanocrystalline Gold 336

9.3.1 Introduction 348

9.3 FIB/TEM Observation of Defect Structure Underneath an Indentation 348

9.3.2 FIB Milling 349

9.3.3 Experimental Procedures 349

9.3.4 Load-Displacement Curve 349

9.3.5 TEM Observation 352

9.3.6 Conclusion 355

References 355

10 Thermal Analysis 358

10.1 Introduction 358

10.2 Fundamental Techniques 359

10.3 Experimental Approach 364

10.3.1 Melting of Nanophases and Nanostructured Materials 365

10.3.2 Kinetics of Glass-Nanocrystal Transition and Grain Growth of Nanostructured Materials 366

10.3.3 Heat capacity of Nanostructured Materials 369

10.3.4 Interface Enthalpy of Nanostructured Materials 370

10.4 Data Interpretation 372

10.4.1 Size-Dependent Melting Thermodynamics of Nanophases 372

10.4.2 Glass-nanocrystal Transition Thermodynamics 374

10.5 Examples of Applications 374

10.6 Limitalions 382

10.7 Prospects 383

References 384

Index 386

返回顶部