Python机器学习算法PDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:刘硕著
- 出 版 社:北京:清华大学出版社
- 出版年份:2019
- ISBN:9787302536505
- 页数:208 页
第1章 线性回归 1
1.1 线性回归模型 1
1.2 最小二乘法 2
1.3 梯度下降 4
1.3.1 梯度下降算法 4
1.3.2 随机梯度下降和小批量梯度下降 6
1.4 算法实现 7
1.4.1 最小二乘法 7
1.4.2 梯度下降 9
1.5 项目实战 12
1.5.1 准备数据 12
1.5.2 模型训练与测试 13
第2章 Logistic回归与Softmax回归 20
2.1 Logistic回归 20
2.1.1 线性模型 20
2.1.2 logistic函数 21
2.1.3 Logistic回归模型 23
2.1.4 极大似然法估计参数 24
2.1.5 梯度下降更新公式 25
2.2 Softmax回归 26
2.2.1 Softmax函数 26
2.2.2 Softmax回归模型 27
2.2.3 梯度下降更新公式 27
2.3 编码实现 28
2.3.1 Logistic回归 28
2.3.2 Softmax回归 32
2.4 项目实战 36
2.4.1 Logistic回归 36
2.4.2 Softmax回归 43
第3章 决策树——分类树 46
3.1 决策树模型 46
3.2 生成决策树 48
3.3 切分特征的选择 49
3.3.1 信息熵 49
3.3.2 条件信息熵 50
3.3.3 信息增益 51
3.3.4 信息增益比 53
3.4 算法实现 53
3.5 绘制决策树 57
3.6 项目实战 64
3.6.1 准备数据 64
3.6.2 模型训练与测试 66
第4章 决策树——分类回归树 70
4.1 CART算法的改进 70
4.2 处理连续值特征 71
4.3 CART分类树与回归树 72
4.3.1 CART分类树 72
4.3.2 CART回归树 74
4.4 算法实现 75
4.4.1 CART分类树 75
4.4.2 CART回归树 80
4.5 项目实战 85
4.5.1 CART分类树 85
4.5.2 CART回归树 89
第5章 朴素贝叶斯 95
5.1 朴素贝叶斯模型 95
5.1.1 贝叶斯公式 95
5.1.2 贝叶斯分类器 97
5.1.3 朴素贝叶斯分类器 97
5.2 模型参数估计 98
5.2.1 极大似然估计 98
5.2.2 贝叶斯估计 102
5.3 算法实现 103
5.4 项目实战 105
5.4.1 准备数据 106
5.4.2 模型训练与测试 108
第6章 支持向量机 110
6.1 线性可分支持向量机 110
6.1.1 分离超平面 110
6.1.2 间隔最大化 112
6.1.3 拉格朗日对偶法 113
6.1.4 分类决策函数 116
6.1.5 线性可分支持向量机算法 117
6.2 线性支持向量机 118
6.2.1 软间隔最大化 118
6.2.2 线性支持向量机算法 121
6.3 非线性支持向量机 122
6.3.1 空间变换 122
6.3.2 核技巧 123
6.3.3 非线性支持向量机算法 124
6.4 SMO算法 125
6.4.1 两个变量最优化问题的求解 126
6.4.2 变量选择 129
6.4.3 更新b 131
6.4.4 更新E缓存 132
6.5 算法实现 133
6.6 项目实战 139
6.6.1 准备数据 140
6.6.2 模型训练与测试 141
第7章 k近邻学习 145
7.1 kNN学习 145
7.1.1 kNN学习模型 145
7.1.2 距离的度量 146
7.1.3 k值的选择 149
7.2 kNN的一种实现:k-d树 150
7.2.1 构造k-d树 150
7.2.2 搜索k-d树 153
7.3 算法实现 155
7.3.1 线性扫描版本 155
7.3.2 k-d树版本 157
7.4 项目实战 161
7.4.1 准备数据 162
7.4.2 模型训练与测试 163
第8章 K-Means 167
8.1 K-Means 167
8.1.1 距离的度量 168
8.1.2 聚类算法的性能 169
8.1.3 K-Means算法 171
8.2 K-Means++ 172
8.3 算法实现 173
8.3.1 K-Means 173
8.3.2 K-Means+++ 176
8.4 项目实战 179
8.4.1 准备数据 180
8.4.2 模型训练与测试 181
第9章 人工神经网络 184
9.1 神经网络 184
9.1.1 人造神经元 184
9.1.2 神经网络 187
9.2 反向传播算法 188
9.2.1 输出节点的权值更新 189
9.2.2 隐藏节点的权值更新 190
9.3 算法实现 192
9.3.1 神经网络分类器 192
9.3.2 神经网络回归器 196
9.4 项目实战 202
9.4.1 准备数据 203
9.4.2 模型训练与测试 206
- 《党员干部理论学习培训教材 理论热点问题党员干部学习辅导》(中国)胡磊 2018
- 《深度学习与飞桨PaddlePaddle Fluid实战》于祥 2019
- 《全国普通高等中医药院校药学类专业“十三五”规划教材 第二轮规划教材 有机化学学习指导 第2版》赵骏 2018
- 《智能制造高技能人才培养规划丛书 ABB工业机器人虚拟仿真教程》(中国)工控帮教研组 2019
- 《全国职业院校工业机器人技术专业规划教材 工业机器人现场编程》(中国)项万明 2019
- 《基于核心素养的有效学习与学业评价策略 初中政治》李亚莉主编 2018
- 《人体寄生虫学学习指导与习题集 供基础 临床 预防 口腔医学类专业用 第2版》诸欣平,苏川 2018
- 《大学信息技术基础学习与实验指导教程》安世虎主编 2019
- 《计算机视觉系统设计及显著性算法研究》徐海波著 2019
- 《牛津中国心理学手册 上 认知与学习》(美)迈克尔·哈里斯·邦德主编;赵俊华,张春妹译 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019