当前位置:首页 > 其他书籍
负折射和负折射率材料物理  光电性质和不同实现方法  影印版=PHYSICS OF NEGATIVE REFRACTION AND NEGATIVE LNDEX MATERIALS OPTICAL A
负折射和负折射率材料物理  光电性质和不同实现方法  影印版=PHYSICS OF NEGATIVE REFRACTION AND NEGATIVE LNDEX MATERIALS OPTICAL A

负折射和负折射率材料物理 光电性质和不同实现方法 影印版=PHYSICS OF NEGATIVE REFRACTION AND NEGATIVE LNDEX MATERIALS OPTICAL APDF电子书下载

其他书籍

  • 电子书积分:13 积分如何计算积分?
  • 作 者:(美)克罗恩(C.M.Krowne),(美)张勇(Y.Zhang)主编
  • 出 版 社:北京大学出版社
  • 出版年份:2012
  • ISBN:
  • 页数:378 页
图书介绍:
《负折射和负折射率材料物理 光电性质和不同实现方法 影印版=PHYSICS OF NEGATIVE REFRACTION AND NEGATIVE LNDEX MATERIALS OPTICAL A》目录

1 Negative Refraction of Electromagnetic and Electronic Waves in Uniform Media&Y. Zhang and A. Mascarenhas 1

1.1 Introduction 1

1.1.1 Negative Refraction 1

1.1.2 Negative Refraction with Spatial Dispersion 3

1.1.3 Negative Refraction with Double Negativity 4

1.1.4 Negative Refraction Without Left-Handed Behavior 5

1.1.5 Negative Refraction Using Photonic Crystals 6

1.1.6 From Negative Refraction to Perfect Lens 6

1.2 Conditions for Realizing Negative Refraction and Zero Reflection 8

1.3 Conclusion 15

References 16

2 Anisotropic Field Distributions in Left-Handed Guided Wave Electronic Structures and Negative Refractive Bicrystal Heterostructures&C.M. Krowne 19

2.1 Anisotropic Field Distributions in Left-Handed Guided Wave Electronic Structures 19

2.1.1 Introduction 19

2.1.2 Anisotropic Green's Function Based Upon LHM or DNM Properties 21

2.1.3 Determination of the Eigenvalues and Eigenvectors for LHM or DNM 32

2.1.4 Numerical Calculations of the Electromagnetic Field for LHM or DNM 42

2.1.5 Conclusion 65

2.2 Negative Refractive Bicrystal Heterostructures 66

2.2.1 Introduction 66

2.2.2 Theoretical Crystal Tensor Rotations 67

2.2.3 Guided Stripline Structure 67

2.2.4 Beam Steering and Control Component Action 67

2.2.5 Electromagnetic Fields 69

2.2.6 Surface Current Distributions 70

2.2.7 Conclusion 72

References 72

3 "Left-Handed"Magnetic Granular Composites&S.T. Chui,L.B.Hu,Z.Lin and L. Zhou 75

3.1 Introduction 75

3.2 Description of"Left-Handed"Electromagnetic Waves:The Effect of the Imaginary Wave Vector 76

3.3 Electromagnetic Wave Propagations in Homogeneous Magnetic Materials 78

3.4 Some Characteristics of Electromagnetic Wave Propagation in Anisotropic"Left-Handed"Materials 80

3.4.1 "Left-Handed"Characteristic of Electromagnetic Wave Propagation in Uniaxial Anisotropic"Left-Handed"Media 80

3.4.2 Characteristics of Refraction of Electromagnetic Waves at the Interfaces of Isotropic Regular Media and Anisotropic"Left-Handed"Media 85

3.5 Multilayer Structures Left-Handed Material:An Exact Example 88

References 93

4 Spatial Dispersion,Polaritons,and Negative Refraction&V.M. Agranovich and Yu. N. Gartstein 95

4.1 Introduction 95

4.2 Nature of Negative Refraction:Historical Remarks 97

4.2.1 Mandelstam and Negative Refraction 97

4.2.2 Cherenkov Radiation 100

4.3 Maxwell Equations and Spatial Dispersion 102

4.3.1 Dielectric Tensor 102

4.3.2 Isotropic Systems with Spatial Inversion 105

4.3.3 Connection to Microscopics 106

4.3.4 Isotropic Systems Without Spatial Inversion 110

4.4 Polaritons with Negative Group Velocity 111

4.4.1 Excitons with Negative Effective Mass in Nonchiral Media 111

4.4.2 Chiral Systems in the Vicinity of Excitonic Transitions 114

4.4.3 Chiral Systems in the Vicinity of the Longitudinal Frequency 116

4.4.4 Surface Polaritons 118

4.5 Magnetic Permeability at Optical Frequencies 121

4.5.1 Magnetic Moment of a Macroscopic Body 122

4.6 Related Interesting Effects 127

4.6.1 Generation of Harmonics from a Nonlinear Material with Negative Refraction 127

4.6.2 Ultra-Short Pulse Propagation in Negative Refraction Materials 128

4.7 Concluding Remarks 129

References 130

5 Negative Refraction in Photonic Crystals&W.T. Lu,P. Vodo,and S. Sridhar 133

5.1 Introduction 133

5.2 Materials with Negative Refraction 134

5.3 Negative Refraction in Microwave Metallic Photonic Crystals 135

5.3.1 Metallic PC in Parallel-Plate Waveguide 135

5.3.2 Numerical Simulation of TM Wave Scattering 140

5.3.3 Metallic PC in Free Space 141

5.3.4 High-Order Bragg Waves at the Surface of Metallic Photonic Crystals 144

5.4 Conclusion and Perspective 145

References 146

6 Negative Refraction and Subwavelength Focusing in Two-Dimensional Photonic Crystals&E. Ozbay and G. Ozkan 149

6.1 Introduction 149

6.2 Negative Refraction and Subwavelength Imaging of TM Polarized Electromagnetic Waves 150

6.3 Negative Refraction and Point Focusing of TE Polarized Electromagnetic Waves 154

6.4 Negative Refraction and Focusing Analysis for a Metallodielectric Photonic Crystal 157

6.5 Conclusion 162

References 163

7 Negative Refraction and Imaging with Quasicrystals&X. Zhang,Z. Feng,Y. Wang,Z.-Y.Li,B. Cheng and D.-Z.Zhang 167

7.1 Introduction 167

7.2 Negative Refraction by High-Symmetric Quasicrystal 168

7.3 Focus and Image by High-Symmetric Quasicrystal Slab 172

7.4 Negative Refraction and Focusing of Acoustic Wave by High-Symmetric Quasiperiodic Phononic Crystal 179

7.5 Summary 180

References 181

8 Generalizing the Concept of Negative Medium to Acoustic Waves&J. Li,K.H. Fung,Z.Y. Liu,P. Sheng and C.T. Chan 183

8.1 Introduction 183

8.2 A Simple Model 186

8.3 An Example of Negative Mass 190

8.4 Acoustic Double-Negative Material 193

8.4.1 Construction of Double-Negative Material by Mie Resonances 197

8.5 Focusing Effect Using Double-Negative Acoustic Material 205

8.6 Focusing by Uniaxial Effective Medium Slab 205

References 215

9 Experiments and Simulations of Microwave Negative Refraction in Split Ring and Wire Array Negative Index Materials,2D Split-Ring Resonator and 2D Metallic Disk Photonic Crystals&F.J. Rachford,D.L. Smith and P.F. Loschialpo 217

9.1 Introduction 217

9.2 Theory 219

9.3 FDTD Simulations in an Ideal Negative Index Medium 220

9.4 Simulations and Experiments with Split-Ring Resonators and Wire Arrays 223

9.5 Split-Ring Resonator Arrays as a 2D Photonic Crystal 226

9.6 Hexagonal Disk Array 2D Photonic Crystal Simulations:Focusing 231

9.7 Modeling Refraction Through the Disk Medium 236

9.8 Hexagonal Disk Array Measurements-Transmission and Focusing 240

9.9 Hexagonal Disk Array Measurements-Refraction 242

9.10 Conclusions 248

References 248

10 Super Low Loss Guided Wave Bands Using Split Ring Resonator-Rod Assemblies as Left-Handed Materials C.M.Krowne 251

10.1 Introduction 251

10.2 Metamaterial Representation 252

10.3 Guiding Structure 255

10.4 Numerical Results 257

10.5 Conclusions 258

References 259

11 Development of Negative Index of Refraction Metamaterials with Split Ring Resonators and Wires for RF Lens Applications&C.G. Parazzoli,R.B. Greegor and M.H. Tanielian 261

11.1 Electromagnetic Negative Index Materials 261

11.1.1 The Physics of NIMs 262

11.1.2 Design of the NIM Unit Cell 264

11.1.3 Origin of Losses in Left-Handed Materials 266

11.1.4 Reduction in Transmission Due to Polarization Coupling 270

11.1.5 The Effective Medium Limit 272

11.1.6 NIM Indefinite Media and Negative Refraction 272

11.2 Demonstration of the NIM Existence Using Snell's Law 277

11.3 Retrieval of εeff and μeff from the Scattering Parameters 281

11.3.1 Homogeneous Effective Medium 282

11.3.2 Lifting the Ambiguities 283

11.3.3 Inversion for Lossless Materials 286

11.3.4 Periodic Effective Medium 287

11.3.5 Continuum Formulation 288

11.4 Characterization of NIMs 289

11.4.1 Measurement of NIM Losses 289

11.4.2 Experimental Confirmation of Negative Phase Shift in NIM Slabs 290

11.5 NIM Optics 295

11.5.1 NIM Lenses and Their Properties 295

11.5.2 Aberration Analysis of Negative Index Lenses 296

11.6 Design and Characterization of Cylindrical NIM Lenses 299

11.6.1 Cylindrical NIM Lens in a Waveguide 300

11.7 Design and Characterization of Spherical NIM Lenses 305

11.7.1 Characterization of the Empty Aperture 305

11.7.2 Design and Characterization of the PIM lens 307

11.7.3 Design and Characterization of the NIM Lens 308

11.7.4 Design and Characterization of the GRIN Lens 311

11.7.5 Comparison of Experimental Data for Empty Aperture,PIM,NIM,and GRIN Lenses 314

11.7.6 Comparison of Simulated and Experimental Aberrations for the PIM,NIM,and GRIN Lenses 317

11.7.7 Weight Comparison Between the PIM,NIM,and GRIN Lenses 327

11.8 Conclusion 327

References 328

12 Nonlinear Effects in Left-Handed Metamaterials&I.V. Shadrivov and Y.S. Kivshar 331

12.1 Introduction 331

12.2 Nonlinear Response of Metamaterials 333

12.2.1 Nonlinear Magnetic Permeability 334

12.2.2 Nonlinear Dielectric Permittivity 336

12.2.3 FDTD Simulations of Nonlinear Metamaterial 337

12.2.4 Electromagnetic Spatial Solitons 340

12.3 Kerr-Type Nonlinear Metamaterials 343

12.3.1 Nonlinear Surface Waves 343

12.3.2 Nonlinear Pulse Propagation and Surface-Wave Solitons 349

12.3.3 Nonlinear Guided Waves in Left-Handed Slab Waveguide 351

12.4 Second-Order Nonlinear Effects in Metamaterials 355

12.4.1 Second-Harmonics Generation 355

12.4.2 Enhanced SHG in Double-Resonant Metamaterials 363

12.4.3 Nonlinear Quadratic Flat Lens 367

12.5 Conclusions 369

References 370

Index 373

返回顶部