当前位置:首页 > 数理化
量子群入门  英文版
量子群入门  英文版

量子群入门 英文版PDF电子书下载

数理化

  • 电子书积分:19 积分如何计算积分?
  • 作 者:(美)沙里著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2010
  • ISBN:9787510005770
  • 页数:651 页
图书介绍:本书全面讲述了量子群理论及其应用,量子群论在低维拓扑和共性场论的作用极为显著。书中内容自称体系,详尽地讲述了最新观点,并附有具体的参考文件。
《量子群入门 英文版》目录

Introduction 1

1 Poisson-Lie groups and Lie bialgebras 15

1.1 Poisson manifolds 16

A Definitions 16

B Functorial properties 18

C Symplectic leaves 18

1.2 Poisson-Lie groups 21

A Definitions 21

B Poisson homogeneous spaces 22

1.3 Lie bialgebras 24

A The Lie bialgebra of a Poisson-Lie group 24

B Manin triples 26

C Examples 28

D Derivations 32

1.4 Duals and doubles 33

A Duals of Lie bialgebras and Poisson-Lie groups 33

B The classical double 34

C Compact Poisson-Lie groups 35

1.5 Dressing actions and symplectic leaves 36

A Poisson actions 36

B Dressing transformations and symplectic leaves 37

C Symplectic leaves in compact Poisson-Lie groups 39

D The twisted case 41

1.6 Deformation of Poisson structures and quantization 43

A Deformations of Poisson algebras 43

B Weyl quantization 44

C Quantization as deformation 46

Bibliographical notes 48

2 Coboundary Poisson-Lie groups and the classical Yang-Baxter equation 50

2.1 Coboundary Lie bialgebras 50

A Defnitions 50

B The classical Yang-Baxter equation 54

C Examples 55

D The classical double 58

2.2 Coboundary Poisson-Lie groups 59

A The Sklyanin bracket 60

B r-matrices and 2-cocycles 62

C The classical R-matrix 67

2.3 Classical integrable systems 68

A Complete integrability 68

B Lax pairs 69

C Integrable systems from r-matrices 71

D Toda systems 75

Bibliographical notes 77

3 Solutions of the classical Yang-Baxter equation 79

3.1 Constant solutions of the CYBE 80

A The parameter space of non-skew solutions 80

B Description of the solutions 81

C Examples 82

D Skew solutions and quasi-Frobenius Lie algebras 84

3.2 Solutions of the CYBE with spectral parameters 87

A Classification of the solutions 87

B Elliptic solutions 90

C Trigonometric solutions 91

D Rational solutions 95

Bibliographical notes 98

4 Quasitriangular Hopf algebras 100

4.1 Hopf algebras 101

A Definitions 101

B Examples 105

C Representations of Hopf algebras 108

D Topological Hopf algebras and duality 111

E Integration on Hopf algebras 115

F Hopf *-algebras 117

4.2 Quasitriangular Hopf algebras 119

A Almost cocommutative Hopf algebras 119

B Quasitriangular Hopf algebras 123

C Ribbon Hopf algebras and quantum dimension 125

D The quantum double 127

E Twisting 129

F Sweedler's example 131

Bibliographical notes 133

5 Representations and quasitensor categories 135

5.1 Monoidal categories 136

A Abelian categories 136

B Monoidal categories 138

C Rigidity 139

D Examples 140

E Reconstruction theorems 147

5.2 Quasitensor categories 149

A Tensor categories 149

B Quasitensor categories 152

C Balancing 154

D Quasitensor categories and fusion rules 154

E Quasitensor categories in quantum field theory 157

5.3 Invariants of ribbon tangles 161

A Isotopy invariants and monoidal functors 161

B Tangle invariants 166

C Central elements 168

Bibliographical notes 168

6 Quantization of Lie bialgebras 170

6.1 Deformations of Hopf algebras 171

A Definitions 171

B Cohomology theory 173

C Rigidity theorems 176

6.2 Quantization 177

A (Co-)Poisson Hopf algebras 177

B Quantization 179

C Existence of quantizations 182

6.3 Quantized universal enveloping algebras 187

A Cocommutative QUE algebras 187

B Quasitriangular QUE algebras 188

C QUE duals and doubles 189

D The square of the antipode 190

6.4 The basic example 192

A Construction of the standard quantization 192

B Algebra structure 196

C PBW basis 199

D Quasitriangular structure 200

E Representations 203

F A non-standard quantization 206

6.5 Quantum Kac-Moody algebras 207

A The standard quantization 207

B The centre 212

C Multiparameter quantizations 212

Bibliographical notes 213

7 Quantized function algebras 215

7.1 The basic example 216

A Definition 216

B A basis of Fh(SL2(?)) 220

C The R-matrix formulation 222

D Duality 223

E Representations 227

7.2 R-matrix quantization 228

A From R-matrices to bialgebras 228

B From bialgebras to Hopf algebras:the quantum determinant 231

C Solutions of the QYBE 233

7.3 Examples of quantized function algebras 234

A The general definition 234

B The quantum special linear group 235

C The quantum orthogonal and symplectic groups 236

D Multiparameter quantized function algebras 238

7.4 Differential calculus on quantum groups 240

A The de Rham complex of the quantum plane 240

B The de Rham complex of the quantum m×m matrices 242

C The de Rham complex of the quantum general linear group 244

D Invariant forms on quantum GLm 245

7.5 Integrable lattice models 246

A Vertex models 246

B Transfer matrices 248

C Integrability 249

D Examples 251

Bibliographical notes 253

8 Structure of QUE algebras:the universal R-matrix 255

8.1 The braid group action 256

A The braid group 256

B Root vectors and the PBW basis 258

8.2 The quantum Weyl group 262

A The sl2 case 262

B The relation with the universal R-matrix 263

C The general case 265

8.3 The quasitriangular structure 266

A The quantum double construction 266

B The sl2 case 267

C The general case 271

D Multiplicative properties 274

E Uniqueness of the universal R-matrix 275

F The centre of Uh 275

G Matrix solutions of the quantum Yang-Baxter equation 276

Bibliographical notes 278

9 Specializations of QUE algebras 279

9.1 Rational forms 280

A The definition of Uq 280

B Some basic properties of Uq 282

C The Harish Chandra homomorphism and the centre of Uq 284

D A geometric realization 285

9.2 The non-restricted specialization 288

A The non-restricted integral form 289

B The centre 290

C The quantum coadjoint action 293

9.3 The restricted specialization 296

A The restricted integral form 297

B A remarkable finite-dimensional Hopf algebra 301

C A Frobenius map in characteristic zero 304

D The quiver approach 307

9.4 Automorphisms and real forms 309

A Automorphisms 309

B Real forms 309

Bibliographical notes 311

10 Representations of QUE algebras:the generic case 313

10.1 Classification of finite-dimensional representations 313

A Highest weight modules 313

B The determinant formula 319

C Specialization:the non-root of unity case 324

D R-matrices associated to representations of Uq 327

E Unitary representations 329

10.2 Quantum invariant theory 332

A Hecke and Birman-Murakami-Wenzl algebras 332

B Quantum Brauer-Frobenius-Schur duality 334

C Another realization of Hecke algebras 336

Bibliographical notes 337

11 Representations of QUE algebras:the root of unity case 338

11.1 The non-restricted case 339

A Parametrization of the irreducible representations of U? 339

B Some explicit constructions 344

C Intertwiners and the QYBE 348

11.2 The restricted case 351

A Highest weight representations 351

B A tensor product theorem 357

C Quasitensor structure 359

D Some conjectures 359

11.3 Tilting modules and the fusion tensor product 361

A Tilting modules 361

B Quantum dimensions 365

C Tensor products 367

D The categorical formulation 370

Bibliographical notes 372

12 Infinite-dimensional quantum groups 374

12.1 Yangians and their representations 375

A Three realizations 375

B Basic properties 380

C Classification of the finite-dimensional representations 383

D Evaluation representations 386

E The sl2 case 388

12.2 Quantum affine algebras 392

A Another realization:quantum loop algebras 392

B Finite-dimensional representations of quantum loop algebras 394

C Evaluation representations 399

12.3 Frobenius-Schur duality for Yangians and quantum affine algebras 403

A Affine Hecke algebras and their degenerations 403

B Representations of affine Hecke algebras 405

C Duality for U?(sln+1(?))-revisited 408

D Quantum affine algebras and affine Hecke algebras 410

E Yangians and degenerate affine Hecke algebras 413

12.4 Yangians and infinite-dimensional classical groups 414

A Tame representations 415

B The relation with Yangians 416

12.5 Rational and trigonometric solutions of the QYBE 417

A Yangians and rational solutions 418

B Quantum affine algebras and trigonometric solutions 423

Bibliographical notes 426

13 Quantum harmonic analysis 428

13.1 Compact quantum groups and their representations 430

A Definitions 430

B Highest weight representations 433

C The sl2 case 435

D The general case:tensor products 437

E The twisted case and quantum tori 439

F Representations at roots of unity 442

13.2 Quantum homogeneous spaces 445

A Quantum G-spaces 445

B Quantum flag manifolds and Schubert varieties 447

C Quantum spheres 448

13.3 Compact matrix quantum groups 451

A C* completions and compact matrix quantum groups 451

B The Haar integral on compact quantum groups 454

13.4 A non-compact quantum group 459

A The quantum euclidean group 459

B Representation theory 462

C Invariant integration on the quantum euclidean group 463

13.5 q-special functions 465

A Little q-Jacobi polynomials and quantum SU2 466

B Big q-Jacobi polynomials and quantum spheres 467

C q-Bessel functions and the quantum euclidean group 469

Bibliographical notes 473

14 Canonical bases 475

14.1 Crystal bases 476

A Gelfand-Tsetlin bases 476

B Crystal bases 478

C Globalization 480

D Crystal graphs and tensor products 481

14.2 Lusztig's canonical bases 486

A The algebraic construction 486

B The topological construction 488

C Some combinatorial formulas 490

Bibliographical notes 492

15 Quantum group invariants of knots and 3-manifolds 494

15.1 Knots and 3-manifolds:a quick review 495

A From braids to links 496

B From links to 3-manifolds 502

15.2 Link invariants from quantum groups 504

A Link invariants from R-matrices 504

B Link invariants from vertex models 510

15.3 Modular Hopf algebras and 3-manifold invariants 517

A Modular Hopf algebras 517

B The construction of 3-manifold invariants 522

Bibliographical notes 525

16 Quasi-Hopf algebras and the Knizhnik-Zamolodchikov equation 527

16.1 Quasi-Hopf algebras 528

A Definitions 529

B An example from conformal field theory 533

C Quasi-Hopf QUE algebras 534

16.2 The Kohno-Drinfel'd monodromy theorem 537

A Braid groups and configuration spaces 537

B The Knizhnik-Zamolodchikov equation 539

C The KZ equation and affine Lie algebras 541

D Quantization and the KZ equation 543

E The monodromy theorem 549

16.3 Affine Lie algebras and quantum groups 550

A The category O? 551

B The tensor product 552

C The equivalence theorem 555

16.4 Quasi-Hopf algebras and Grothendieck's esquisse 556

A Gal(?/?)and pro-finite fundamental groups 557

B The Grothendieck-Teichmüller group and quasitriangular quasi-Hopf algebras 559

Bibliographical notes 560

Appendix Kac-Moody algebras 562

A 1 Generalized Cartan matrices 562

A 2 Kac-Moody algebras 562

A 3 The invariant bilinear form 563

A 4 Roots 563

A 5 The Weyl group 564

A 6 Root vectors 565

A 7 Affine Lie algebras 565

A 8 Highest weight modules 566

References 567

Index of notation 638

General index 643

返回顶部