当前位置:首页 > 数理化
符号动力系统
符号动力系统

符号动力系统PDF电子书下载

数理化

  • 电子书积分:9 积分如何计算积分?
  • 作 者:周作领著
  • 出 版 社:上海:上海科技教育出版社
  • 出版年份:1997
  • ISBN:7542814168
  • 页数:173 页
图书介绍:
《符号动力系统》目录

ChaPter1 The foundation of topological dynamics 1

第1章 拓扑动力系统基础 1

§1 Topological dynamics 1

§1.1 Dynamical Systems and Subsystems 1

§1 动力系统和子系统 1

§1.1 动力系统和子系统 1

§1.2 映射空间 5

§2.1 Recurrence 5

§2 回复性 5

§2.1 回复性 5

§2 Recurrence 6

§1.2 Mapping Spaces with the C0-topology 6

§2.2 ω-limit sets 8

§2.2 ω-极限集 8

§3 拓扑传递性和拓扑混合性 12

§3 Topological Transitivity and Mixing 12

§3.1 Topological Transitivity 12

§3.1 拓扑传递性 12

§3.2 Topological Mixing 14

§3.2 拓扑混合性 14

§4.1 Minimal Sets and minimal Mappings 15

§4 Minimal Sets and Almost Periodic Points 15

§4 极小集和几乎周期点 16

§4.2 Almost Periodic Points 16

§4.2 几乎周期点 16

§4.1 极小集和极小映射 16

§5.1 Equivalent Classification of Systems——Topological Conjugacy 18

§5 Topological conjugacy and semi-Conjugacy 18

§5.1 紧致系统的等价分类——拓扑共轭 18

§5 拓扑共轭与半共轭 18

§5.2 Topological semi-Conjugacy and Minimal Coverings 20

§5.2 拓扑半共轭与极小覆盖 20

第2章 拓扑熵与混沌 24

ChaPter2 Topological Entropy and Chaos 24

§6 Topological Entropy 25

§6 拓扑熵 25

§6.1 Definition Using Open Coverings 25

§6.4 Estimation and Calculation of Topological Entropy 26

§6.1 拓扑熵的开覆盖定义 26

§6.2 拓扑熵的Bowen定义 27

§6.2 Bowen’s Definition 27

§6.3 Basic Properties of Topological Entropy 28

§6.2 拓扑熵的基本性质 28

§6.4 拓扑熵的估计与计算 36

§7.1 Two Important Theorems 41

§7 混沌 41

§7 Chaos 41

§7.1 两个重要定理 41

§7.2 Chaos in the Li-Yorke’s Sense 49

§7.2 李-约克混沌 49

§7.3 其他混沌 52

§7.3 Other Chaos 52

第8章 符号动力系统 56

§8.1 Symbolic Spaces and Shifts 56

§8 Symbolic Spaces and Shifts 56

ChaPter3 Symbolic Dynamics 56

§8 符号空间与转移自映射 56

§8.1 符号空间与转移自映射 56

§8.2 Dynamical Behavior of Shifts 59

§8.2 符号动力系统的动力性状 59

§8.3 Chaotic Behavior of Shifts 62

§8.3 转移自映射的混沌性状 62

§9.1 子转移和排除系统 68

§9 子转移 68

§9.1 Subshifts and Excluded Block Svstems 68

§9 Subshifts 68

§9.2 有限型子转移和阶数 71

§9.2 Subshifts of Finite Type and Crder 71

§10.1 斯梅尔马蹄 74

§10 符号动力系统的应用 74

§10.1 Smale Horseshoe 74

§10 Some Applications of Symbolic Dynamics 74

§10.2 转移不变集 78

§10.2 Shift Invariant Sets 78

§10.3 拓扑熵映射的连续性 86

§10.3 The Continuity of Mappings of Topological Entropy 86

§11.1 不可约性和非周期性 95

Chapter4 Subshifts of Finite Type 95

第4章 有限型子转移与非负方阵 95

§11 非负方阵 95

§11 Non-negative Matrices 95

§11.1 Irreducibility and Aperiodicty 95

§11.2 Directed Gragh of Non-negative Matcix 100

§11.2 非负方阵的有向图 100

§12 有限型子转移的转移方阵 103

§12.1 Shift Matrices 103

§12 Shift Matrices of Subshifts of Finite Type 103

§12.1 转移方阵 103

§12.2 some Restrictions on Shift Matrices 105

§12.2 转移方阵的限制 105

ChaPter5 Dynamical Behavior of Subshifts of Finite Type 112

§13 Nonwandering sets and Transitivity 112

§13.1 Nonwandering Sets 112

§13.1 有限型子转移的非游荡集 112

§13 有限型子转移的非游荡集与传递性 112

第5章 有限型子转移的动力性状 112

§13.2 Recurrence and All That 119

§13.2 回复性及其他 119

§14.1 子转移的拓扑熵计算 126

§14 有限型子转移的拓扑熵与混沌 126

§14 Topological Entropy and Chaos of Subshifts of Finite Type 126

§14.1 Calculation of Topological Entropy of Subshifts 126

§14.2 Chaotic Behavior of Subshifts of Finlte Type 132

§14.2 有限型子转移的混沌性状 132

§15 Mixing of Shifts of Finite Type 137

§15 有限型子转移的混合性 137

§15.1 Auxiliary Propositions 138

§15.1 辅助命题 138

§15.2 Some Equivalent Conditions 143

§15.2 若干等价条件 143

ChaPter6 General Subshifts 151

第6章 一般子转移 151

§16 Two examples 152

§16.1 Example 1 152

§16.1 例子1 152

§16 两个例子 152

§16.2 Example 2 159

§16.2 例子2 159

§17 A few substitution Dynamical Systems 165

§17 代换动力系统简介 165

References 171

参考文献 171

返回顶部