当前位置:首页 > 数理化
欧氏空间上的勒贝格积分  修订版  英文版
欧氏空间上的勒贝格积分  修订版  英文版

欧氏空间上的勒贝格积分 修订版 英文版PDF电子书下载

数理化

  • 电子书积分:17 积分如何计算积分?
  • 作 者:(美)Frank Jones
  • 出 版 社:北京:世界图书出版公司北京公司
  • 出版年份:2010
  • ISBN:9787510005558
  • 页数:592 页
图书介绍:本书简明、详细地介绍勒贝格测度和Rn上的积分。本书的基本目的有四个,介绍勒贝格积分;从一开始引入n维空间;彻底介绍傅里叶积分;深入讲述实分析。贯穿全书的大量练习可以增强读者对知识的理解。
《欧氏空间上的勒贝格积分 修订版 英文版》目录

1 Introduction to Rn 1

A Sets 1

B Countable Sets 4

C Topology 5

D Compact Sets 10

E Continuity 15

F The Distance Function 20

2 Lebesgue Measure on Rn 25

A Construction 25

B Properties of Lebesgue Measure 49

C Appendix:Proof of P1 and P2 60

3 Invariance of Lebesgue Measure 65

A Some Linear Algebra 66

B Translation and Dilation 71

C Orthogonal Matrices 73

D The General Matrix 75

4 Some Interesting Sets 81

A A Nonmeasurable Set 81

B A Bevy of Cantor Sets 83

C The Lebesgue Function 86

D Appendix:The Modulus of Continuity of the Lebesgue Functions 95

5 Algebras of Sets and Measurable Functions 103

A Algebras and σ-Algebras 103

B Borel Sets 107

C A Measurable Set which Is Not a Borel Set 110

D Measurable Functions 112

E Simple Functions 117

6 Integration 121

A Nonnegative Functions 121

B General Measurable Functions 130

C Almost Everywhere 135

D Integration Over Subsets of Rn 139

E Generalization:Measure Spaces 142

F Some Calculations 147

G Miscellany 152

7 Lebesgue Integral on Rn 157

A Riemann Integral 157

B Linear Change of Variables 170

C Approximation of Functions in L1 171

D Continuity of Translation in L1 180

8 Fubini's Theorem for Rn 181

9 The Gamma Function 199

A Definition and Simple Properties 199

B Generalization 202

C The Measure of Balls 205

D Further Properties of the Gamma Function 209

E Stirling's Formula 212

F The Gamma Function on R 216

10 Lp Spaces 221

A Definition and Basic Inequalities 221

B Metric Spaces and Normed Spaces 227

C Completeness of Lp 231

D The Case p=∞ 235

E Relations between Lp Spaces 238

F Approximation by C∞c(Rn) 244

G Miscellaneous Problems 246

H The Case 0<p<1 250

11 Products of Abstract Measures 255

A Products of σ-Algebras 255

B Monotone Classes 258

C Construction of the Product Measure 261

D The Fubini Theorem 268

E The Generalized Minkowski Inequality 271

12 Convolutions 277

A Formal Properties 277

B Basic Inequalities 280

C Approximate Identities 284

13 Fourier Transform on Rn 293

A Fourier Transform of Functions in L1(Rn) 293

B The Inversion Theorem 308

C The Schwartz Class 320

D The Fourier-Plancherel Transform 323

E Hilbert Space 334

F Formal Application to Differential Equations 339

G Bessel Functions 344

H Special Results for n=1 352

I Hermite Polynomials 356

14 Fourier Series in One Variable 367

A Periodic Functions 367

B Trigonometric Series 373

C Fourier Coefficients 392

D Convergence of Fourier Series 400

E Summability of Fourier Series 410

F A Counterexample 418

G Parseval's Identity 421

H Poisson Summation Formula 428

I A Special Class of Sine Series 436

15 Differentiation 447

A The Vitali Covering Theorem 448

B The Hardy-Littlewood Maximal Function 450

C Lebesgue's Differentiation Theorem 456

D The Lebesgue Set of a Function 458

E Points of Density 463

F Applications 466

G The Vitali Covering Theorem(Again) 478

H The Besicovitch Covering Theorem 482

I The Lebesgue Set of Order p 491

J Change of Variables 494

K Noninvertible Mappings 505

16 Differentiation for Functions on R 511

A Monotone Functions 511

B Jump Functions 521

C Another Theorem of Fubini 527

D Bounded Variation 530

E Absolute Continuity 544

F Further Discussion of Absolute Continuity 553

G Arc Length 563

H Nowhere Differentiable Functions 570

I Convex Functions 576

Index 581

Symbol Index 587

相关图书
作者其它书籍
返回顶部