RHEOLOGICAL MEASUREMENT SECOND EDITIONPDF电子书下载
- 电子书积分:21 积分如何计算积分?
- 作 者:A.A.COLLYER AND D.W.CLEGG
- 出 版 社:CHAPMAN & HALL
- 出版年份:1998
- ISBN:
- 页数:779 页
Part One Small Strain Measurements 1
1 Oscillatory rheometry&G. Marin 3
1.1 Linear viscoelastic functions in the frequency domain 3
1.1.1 The complex shear modulus G(ω) 5
1.1.2 The complex compliance J(ω) 7
1.1.3 The complex viscosity η(ω) 9
1.2 Test methods in oscillatory rheometry 10
1.2.1 Controlled torque and controlled displacement 11
1.2.2 Rheometers: orthogonal, balance and new designs 16
1.2.3 Free oscillation rheometers 23
1.2.4 Resonant methods 26
1.2.5 Time domain mechanical spectroscopy 26
1.2.6 Improvements in mechanical spectroscopic methods 33
1.2.7 Sources of error 35
1.3 Some important applications of oscillatory rheometry 41
1.3.1 Molecular rheology 42
1.3.2 Characterization of isothermal chemical reactions 43
1.3.3 Thermomechanical analysis 44
References 45
2 Computer-aided methods in rheometry&H. H. Winter, M. Mours, M. Baumgartel and P. R. Soskey 47
2.1 Introduction 47
2.2 Parameters in rheological models 50
2.2.1 Stress-strain relations 50
2.2.2 Steady shear viscosity 54
2.2.3 Rheology of the material at equilibrium 57
2.2.4 Finite viscoelasticity (non-equilibrium) 61
2.3 Determination of rheological material parameters 64
2.3.1 Rheometric experiments 64
2.3.2 Temperature shift factors 66
2.3.3 Relaxation modulus and relaxation time spectrum 72
2.4 Model calculations with relaxation time spectra 79
2.5 Rheometry on samples that undergo changes 85
2.6 Conclusions 92
Appendix: definition of strain and stress tensors 93
Acknowledgement 95
References 95
3 Rheological studies using a vibrating probe&R. A. Pethrick 99
3.1 Introduction 99
3.1.1 Application time, pot life and pour time 101
3.1.2 Working life or working time 101
3.1.3 Gel time 102
3.1.4 Tack-free time, demould time 102
3.1.5 Cure time 102
3.2 Quality control methods 103
3.2.1 Definition of the curing process 103
3.2.2 Methods available for cure monitoring 107
3.3 Vibrating needle curemeter (VNC) 108
3.3.1 Amplitude attenuation for the VNC 108
3.3.2 Output voltage and viscosity 111
3.3.3 Monitoring viscous changes with the VNC 113
3.3.4 Recognizing gelation characteristics with the VNC 115
3.4 Strathclyde curemeter 121
3.4.1 Calibration of the Strathclyde curemeter 125
3.4.2 Thermally scanning curemeter 126
3.4.3 Cure of an epoxy resin system 128
3.4.4 Cure of powder resin systems 130
3.4.5 Plastisol systems 131
3.4.6 Other applications 133
3.5 Conclusions 134
Acknowledgements 135
References 135
4 Dynamic mechanical analysis using complex waveforms&B. I. Nelson and J. M. Dealy 138
4.1 Introduction 138
4.2 Frequency analysis of complex waveforms 139
4.2.1 Time domain mechanical spectroscopy 142
4.3 Properties of the discrete Fourier transform 144
4.3.1 Aliasing 146
4.3.2 Time and frequency domain scaling 147
4.3.3 Leakage 148
4.3.4 Alternating versus simultaneous data acquisition 150
4.4 Some waveforms of special interest 151
4.4.1 Multiple sine waves 151
4.4.2 Equistrain waveforms 152
4.4.3 Pulse-like strains 153
4.4.4 PRBS waveforms 155
4.5 A sample DMA experiment 157
4.6 Conclusions 163
References 164
Part Two Large Strain Measurements 165
5 Capillary rheometry&M. R. Mackley and R. P. G. Rutgers 167
5.1 Introduction 167
5.2 Physical aspects 168
5.3 Level 1: viscometric capillary flow for simple constitutive equations 172
5.3.1 Creeping flow solution for a Newtonian fluid 172
5.3.2 Creeping flow solution for a power law fluid 174
5.3.3 Creeping flow solution for a Bingham plastic fluid 174
5.3.4 Apparent viscosity 175
5.3.5 Entry flow corrections 176
5.4 Level 2: numerical simulation of capillary flow 178
5.4.1 Numerical simulation of Newtonian capillary flow 178
5.4.2 Numerical simulation of power law capillary flow 180
5.5 Level 3: modelling of complex rheological behaviour 180
5.5.1 Viscoelastic constitutive equations 181
5.5.2 Numerical simulation of viscoelastic flow 182
5.6 Multipass rheometry 185
5.7 Conclusions 187
References 188
6 Slit rheometry&Chang Dae Han 190
6.1 Introduction 190
6.2 Theory 191
6.3 Method 193
6.4 Discussion 194
6.4.1 Correlations of Vexit and N1 with?? 194
6.4.2 Extent of flow disturbance near the die exit 201
6.4.3 Extent of viscous shear heating 205
6.5 Concluding remarks 206
Notation 208
References 209
7 Viscous heating&R. C. Warren 210
7.1 Effect of pressure on viscosity 210
7.2 Equations of flow in capillaries 211
7.3 Dimensionless numbers for non-isothermal flow 213
7.4 Non-dimensional equations of flow 215
7.5 Solution methods for the equations of flow 215
7.5.1 Analytical methods 215
7.5.2 Empirical methods 216
7.5.3 Numerical methods 217
7.6 Thermal boundary conditions at the die walls 219
7.6.1 Adiabatic walls 219
7.6.2 Isothermal walls 219
7.6.3 Constant heat transfer coefficient at the die walls 219
7.6.4 Effects of different thermal boundary conditions 221
7.7 Fluid compressibility and expansion cooling 224
7.8 Temperature rise due to viscous heating 226
7.9 Temperature rises: theory versus experiment 227
7.10 Effects of viscous heating on die swell 229
7.10.1 Inelastic fluids 230
7.10.2 Elastic fluids 231
7.11 Concluding remarks 233
Notation 234
References 235
8 Sliding plate and sliding cylinder rheometers&J. M. Dealy and A. J. Giacomin 237
8.1 Introduction 237
8.1.1 Limitations of pressure flow and rotational rheometers 237
8.2 Sliding plate rheometers 239
8.2.1 Basic features 239
8.2.2 Basic equations 240
8.2.3 Sources of error 240
8.2.4 Use of shear stress transducers 247
8.2.5 Applications 249
8.2.6 High shear rate techniques 252
8.3 Sliding cylinder rheometers 253
8.3.1 Introduction 253
8.3.2 Basic equations 253
8.3.3 Applications 255
References 255
9 Rotational viscometry&R. L. Powell 260
9.1 Introduction 260
9.2 Conventional viscometers 262
9.2.1 Cone and plate 262
9.2.2 Parallel plates 268
9.2.3 Concentric cylinders 272
9.3 Sources of error 277
9.3.1 Fluid inertia 277
9.3.2 Flow geometry 278
9.3.3 Viscous heating 282
9.3.4 Sample instability 283
9.3.5 Material effects 284
9.3.6 Wall slip 286
9.3.7 Experimental effects 287
9.4 Novel rheometric flows 288
9.4.1 Alternative cone and plate geometries 288
9.4.2 Vane rheometer 290
9.4.3 Helical screw rheometer 292
Notation 293
References 296
10 Normal stress differences from hole pressure measurements&A. S. Lodge 299
10.1 Summary 299
10.2 Online measurements: high viscosity liquids 299
10.3 Sample measurements: low viscosity liquids at high shear rates 309
10.4 Circular holes 317
10.5 Viscous heating 318
Notation 324
Acknowledgements 324
References 324
11 Using large-amplitude oscillatory shear&A. J. Giacomin and J. M. Dealy 327
11.1 Introduction 327
11.1.1 Simple shear 327
11.1.2 Oscillatory shear 328
11.1.3 Linear viscoelasticity 328
11.1.4 Non-linear viscoelasticity 330
11.1.5 Normal stress differences 330
11.2 Experimental errors 331
11.2.1 Fluid inertia 331
11.2.2 Viscous heating 333
11.2.3 Secondary flows 333
11.3 Measurement techniques 334
11.4 Methods of data analysis 337
11.4.1 Spectral analysis 337
11.4.2 Error analysis 339
11.4.3 Response loops 341
11.4.4 Analogue methods 342
11.4.5 Time-domain analysis 343
11.4.6 Approximate methods 343
11.5 Plausible phase angles 344
11.6 The Pipkin diagram 344
11.7 Slip 345
11.8 Limiting cases 346
11.9 Interpreting non-linear behaviour 347
11.10 Molecular origins 351
Acknowledgements 352
References 353
12 Rate- or stress-controlled rheometry&W. GleijBle 357
12.1 Introduction 357
12.1.1 Contemporary examples of applied rheometry 357
12.2 The problem 359
12.3 Rate-controlled measurements 360
12.4 Stress-controlled measurements 363
12.5 Viscous and viscoelastic similarity 366
12.6 Viscoelastic similarity and Bagley correction 367
12.7 Experiments 372
12.8 Conclusions 377
12.9 Stress-controlled simultaneous measurement of viscosity and flow exponent 378
12.9.1 Measurement technique 379
12.9.2 Flow exponent and molecular weight distribution 382
12.9.3 Experimental design and results 383
12.9.4 Evaluation of flow data 388
12.9.5 Conclusion 390
References 390
13 Transient rheometry&K. F. Wissbrun 392
13.1 Introduction 392
13.2 Transient test types and theoretical equations 393
13.2.1 Constitutive equations 394
13.2.2 Stress relaxation after imposition of step strain 396
13.2.3 Creep after imposition of step stress 397
13.2.4 Stress during start-up and after cessation of steady shear flow 399
13.2.5 Elastic recoil (elastic or strain recovery) 402
13.2.6 Multiple step strain tests 404
13.2.7 Multiple shear rate step tests 406
13.2.8 Continuously varied shear rate tests 408
13.2.9 Superimposed dynamic tests 410
13.3 Analysis of viscoelastic transient test data 410
13.3.1 Determination of relaxation spectra 410
13.3.2 Empirical approximate relations 413
13.4 Experimental considerations 415
13.4.1 Apparatus 415
13.4.2 Sources of error 415
13.4.3 Instrument response time and sample inertia 416
13.4.4 Apparatus compliance 419
13.4.5 Other sources of error and unusual phenomena 421
References 423
14 Commercial rotational rheometers&G. J. Brownsey 427
14.1 Introduction 427
14.2 Commercial rheometers 431
14.2.1 Bohlin Instruments 431
14.2.2 Brookfield Viscometers 434
14.2.3 FANN 436
14.2.4 Haake 436
14.2.5 Kaltec Scientific 440
14.2.6 Physica 441
14.2.7 Reologica 444
14.2.8 Rheometric Scientific 446
14.2.9 TA Instruments 449
14.3 Conclusion 450
14.4 Useful addresses 451
Part Three Extensional and Mixed Flows 453
15 Converging dies&A. G. Gibson 453
15.1 Introduction 455
15.2 Behaviour of polymer melts, solutions and fibre suspensions 458
15.2.1 Implications of fluid anisotropy 459
15.2.2 Extensional behaviour of fibre suspensions 462
15.3 Capillary flow experiments 465
15.4 Treatment of capillary flow data 467
15.5 Conical die flow 472
15.5.1 Flow in convergences of shallow angle 472
15.5.2 A convergent die model using spherical coordinates 477
15.6 Power law equations for a wide range of die angles 482
15.7 Design of injection mould gating 485
15.8 Freely convergent flow: recirculation zones 487
15.9 Conclusions 488
Notation 489
References 490
16 Recoverable elastic strain and swelling ratio&R. I. Tanner 492
16.1 Definition of recoverable elastic strain and swelling ratio 492
16.2 Elastic theory of swelling 494
16.3 Inelastic theory of swelling 497
16.4 Computation of swelling for various rheological models 498
16.4.1 Steady shear behaviour 500
16.4.2 Steady elongational behaviour 503
16.4.3 Results for the planar swelling problem 504
16.5 Relation of rheology to swelling 511
16.6 Conclusion and further investigations 513
Notation 513
References 514
17 Elongational rheometers&R. K. Gupta and T. Sridhar 516
17.1 Introduction 516
17.2 Extensional flow kinematics 518
17.2.1 Tensile viscosity 518
17.3 Homogeneous stretching of polymer melts 519
17.3.1 Constant stretch rate experiments 520
17.3.2 Constant-stress experiments 521
17.3.3 Constant sample length experiments 523
17.3.4 Experimental results 525
17.4 Non-uniform stretching of polymer melts 528
17.4.1 Melt spinning of fibres 529
17.4.2 Converging flows 531
17.4.3 Miscellaneous methods 532
17.5 Homogeneous stretching of polymer solutions 533
17.5.1 Constant stretch rate experiments 534
17.5.2 Experimental results 536
17.6 Non-uniform stretching of polymer solutions 538
17.6.1 Solution spinning of fibres 538
17.6.2 The opposed nozzle rheometer 542
17.6.3 Miscellaneous techniques 544
17.7 Conclusions 545
References 545
18 Squeeze flow&A. G. Gibson, G. Kotsikos, J. H. Bland and S. Toll 550
18.1 Introduction 550
18.2 Theoretical treatment of squeeze flow 552
18.2.1 Constant area squeeze flow 552
18.2.2 Constant volume squeeze flow 554
18.3 Squeeze flow of polymer melts 555
18.3.1 Literature review 555
18.3.2 Normal stresses and elastic effects in squeeze flow 557
18.3.3 Experimental results 559
18.4 Modelling squeeze flow of planar fibre suspensions 563
18.4.1 Transversely isotropic power law model 565
18.4.2 Limiting cases 566
18.4.3 Variational approach 566
18.4.4 Micromechanical approach 570
18.4.5 Non-local constitutive equation 573
18.4.6 Special cases: locality 574
18.4.7 Squeeze flow with continuous tows 575
18.5 Planar fibre suspension squeeze flow models 579
18.6 Experimental squeeze flow of planar fibre suspensions 581
18.6.1 Glass mat thermoplastics 582
18.6.2 Sheet moulding compounds 586
18.7 Conclusions and recommendations for further work 589
Notation 590
References 591
Part Four Specialized Rheometers 593
19 Flow visualization in rheometry&M. E. Mackay and D. V. Boger 595
19.1 Introduction 595
19.2 Birefringence measurements 597
19.2.1 Stress-optic relation 598
19.2.2 Measurement of birefringence 599
19.2.3 Experimental studies using various geometries 602
19.3 Streak-line observation and point velocity measurement 616
19.3.1 Measurement techniques 616
19.3.2 Tubular entry flows of viscoelastic fluids 623
19.4 Conclusion 629
Acknowledgements 630
References 630
20 Rheological measurements on small samples&M. E. Mackay 635
20.1 Introduction 635
20.2 Miniature torsional rheometers 636
20.2.1 Cone and plate 636
20.2.2 Parallel plates 644
20.2.3 Concentric cylinders 647
20.3 Falling ball rheometer 650
20.4 Capillary rheometer 653
20.5 Surface forces rheometer 655
20.6 Prong rheometer 658
20.7 Other rheorheters 662
20.8 Concluding remarks 663
Acknowledgements 664
References 664
21 Rheometry for process control&T. O. Broadhead and J. M. Dealy 666
21.1 An overview of rheometry in manufacturing 666
21.1.1 The value of rheological information 666
21.1.2 Basic elements of a rheological measurement 667
21.1.3 Rheological sensors for process control 667
21.1.4 Instrument classification by method of installation 669
21.2 Rheological behaviour and its measurement 670
21.2.1 A survey of rheological behaviour 670
21.2.2 Test requirements for various fluids 674
21.2.3 Requirements for high pressure operation 677
21.3 Capillary and other pressure flow rheometers 677
21.3.1 Correlations with pressure drop sensors 678
21.3.2 Capillary viscometers 678
21.3.3 Slit rheometers 684
21.4 Rotational process rheometers 686
21.4.1 Common issues 686
21.4.2 Concentric cylinder rheometers 688
21.4.3 Parallel disc rheometers 692
21.4.4 Cone and plate rheometers 693
21.4.5 Rheometers based on lubrication flow 694
21.5 Helical flow rheometers 695
21.6 Piston-cup viscometers 696
21.7 Vibrational rheometers 697
21.8 Other rheometers 699
21.9 Signal processing 699
21.9.1 Calibration 699
21.9.2 Temperature compensation 700
21.9.3 Signal noise and filtering 702
21.9.4 Sampling delay 703
21.9.5 Process control using rheological sensors 704
21.10 Selecting a process rheometer 705
21.10.1 Nature of the material being processed 705
21.10.2 Process conditions 707
21.11 A final word 708
Appendix: manufacturers of commercial instruments 708
References 720
22 Interfacial rheology&B. Warburton 723
22.1 Introduction and history 723
22.2 Definitions and theory 725
22.3 Interfacial stress 725
22.4 Interfacial strain 726
22.5 Interfacial strain rate 727
22.6 Interfacial elastic moduli 727
22.7 Interfacial dilatational techniques 728
22.7.1 Theory of dilatational interfacial rheology 728
22.8 Interfacial shear rheology 730
22.8.1 Continuous rotation 730
22.8.2 Stationary and non-stationary interfacial films 732
22.8.3 Interfacial shear under constant stress 733
22.8.4 Interfacial shear oscillation 734
22.8.5 Interfacial rheology on non-stationary interfacial films 737
22.8.6 Solid films 743
22.9 Immunological processes: cascade kinetics 748
22.10 Summary and conclusions 749
22.11 Names and addresses of instrument manufacturers 749
Acknowledgements 752
References 752
Index 755
- 《中国企业的治理与创新模式 与“美英模式”和“德日模式”的比较》廖春著 2013
- 《系统工程学》贾俊秀,刘爱军,李华编著 2014
- 《C++ AMP 用Visual C++加速大规模并行计算》(美)格雷戈里,(美)米勒著 2014
- 《税法》财政部注册会计师全国考试委员会办公室编 1996
- 《应用英语教程》宋宜贞主编 2009
- 《经理工作的性质》(加)H.明茨伯格(Henry Mintzberg)著;孙耀君译 1999
- 《中国近代文学大系 1840-1919 第4集 第14卷 诗词集 1》钱仲联主编 1991
- 《中国近代文学大系 1840-1919 第3集 第11卷 散文集 2》任访秋主编 1992
- 《毛泽东传 1893-1949 上》中共中央文献研究室编;主编;金冲及 1996
- 《Visual Basic程序员的Java开发指南 用于Windows 95 & Windows NT》(美)(J.W.库珀)James W.Cooper著;于冬梅,宋勇译 1998