ALGEBRAIC GRAPH THEORYPDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:CHRIS GODSIL AND GORDON ROYLE
- 出 版 社:SPRINGER
- 出版年份:2001
- ISBN:
- 页数:220 页
1 Graphs 1
1.1 Graphs 1
1.2 Subgraphs 3
1.3 Automorphisms 4
1.4 Homomorphisms 6
1.5 Circulant Graphs 8
1.6 Johnson Graphs 9
1.7 Line Graphs 10
1.8 Planar Graphs 12
Exercises 16
Notes 17
References 18
2 Groups 19
2.1 Permutation Groups 19
2.2 Counting 20
2.3 Asymmetric Graphs 22
2.4 Orbits on Pairs 25
2.5 Primitivity 27
2.6 Primitivity and Connectivity 29
Exercises 30
Notes 32
References 32
3 Trnnsitive Graphs 33
3.1 Vertex-Transitive Graphs 33
3.2 Edge-Transitive Graphs 35
3.3 Edge Connectivity 37
3.4 Vertex Connectivity 39
3.5 Matchings 43
3.6 Hamilton Paths and Cycles 45
3.7 Cayley Graphs 47
3.8 Directed Cayley Graphs with No Hamilton Cycles 49
3.9 Retracts 51
3.10 Transpositions 52
Exercises 54
Notes 56
References 57
4 Arc-Transitive Graphs 59
4.1 Arc-Transitive Graphs 59
4.2 Arc Graphs 61
4.3 Cubic Arc-Transitive Graphs 63
4.4 The Petersen Graph 64
4.5 Distance-Transitive Graphs 66
4.6 The Coxeter Graph 69
4.7 Tutte’s 8-Cage 71
Exercises 74
Notes 76
References 76
5 Generalized Polygons and Moore Graphs 77
5.1 Incidence Graphs 78
5.2 Projective Planes 79
5.3 A Family of Projective Planes 80
5.4 Generalized Quadrangles 81
5.5 A Family of Generalized Quadrangles 83
5.6 Generalized Polygons 84
5.7 Two Generalized Hexagons 88
5.8 Moore Graphs 90
5.9 The Hoffman-Singleton Graph 92
5.10 Designs 94
Exercises 97
Notes 100
References 100
6 Homomorphisms 103
6.1 The Basics 103
6.2 Cores 104
6.3 Products 106
6.4 The Map Graph 108
6.5 Counting Homomorphisms 109
6.6 Products and Colourings 110
6.7 Uniquely Colourable Graphs 113
6.8 Foldings and Covers 114
6.9 Cores with No Triangles 116
6.10 The Andrasfai Graphs 118
6.11 Colouring Andrasfai Graphs 119
6.12 A Characterization 121
6.13 Cores of Vertex-Transitive Graphs 123
6.14 Cores of Cubic Vertex-Transitive Graphs 125
Exercises 128
Notes 132
References 133
7 Kneser Graphs 135
7.1 Fractional Colourings and Cliques 135
7.2 Fractional Cliques 136
7.3 Fractional Chromatic Number 137
7.4 Homomorphisms and Fractional Colourings 138
7.5 Duality 141
7.6 Imperfect Graphs 142
7.7 Cyclic Interval Graphs 145
7.8 Erdos-Ko-Rado 146
7.9 Homomorphisms of Kneser Graphs 148
7.10 Induced Homomorphisms 149
7.11 The Chromatic Number of the Kneser Graph 150
7.12 Gale’s Theorem 152
7.13 Welzl’s Theorem 153
7.14 The Cartesian Product 154
7.15 Strong Products and Colourings 155
Exercises 156
Notes 159
References 160
8 Matrix Theory 163
8.1 The Adjacency Matrix 163
8.2 The Incidence Matrix 165
8.3 The Incidence Matrix of an Oriented Graph 167
8.4 Symmetric Matrices 169
8.5 Eigenvectors 171
8.6 Positive Semidefinite Matrices 173
8.7 Subharmonic Functions 175
8.8 The Perron-Frobenius Theorem 178
8.9 The Rank of a Symmetric Matrix 179
8.10 The Binary Rank of the Adjacency Matrix 181
8.11 The Symplectic Graphs 183
8.12 Speetral Decomposition 185
8.13 Ratlonal Functions 187
Exercises 188
Notes 192
References 192
9 Interlacing 193
9.1 Interlacing 193
9.2 Inside and Outside the Petersen Graph 195
9.3 Equitable Partitions 195
9.4 Eigenvalues of Kneser Graphs 199
9.5 More Interlacing 202
9.6 More Applications 203
9.7 Bipartite Subgraphs 206
9.8 Fullerenes 208
9.9 Stability of Fullerenes 210
Exercises 213
Notes 215
References 216
10 Strongly Regular Graphs 217
10.1 Parameters 218
10.2 Eigenvalues 219
10.3 Some Characterizations 221
10.4 Latin Square Graphs 223
10.5 Small Strongly Regular Graphs 226
10.6 Local Eigenvalues 227
10.7 The Krein Bounds 231
10.8 Generalized Quadrangles 235
10.9 Lines of Size Three 237
10.10 Quasi-Symmetric Designs 239
10.11 The Witt Design on 23 Points 241
10.12 The Symplectic Graphs 242
Exercises 244
Notes 246
References 247
11 Two-Graphs 249
11.1 Equiangular Lines 249
11.2 The Absolute Bound 251
11.3 Tightness 252
11.4 The Relative Bound 253
11.5 Switching 254
11.6 Regular Two-Graphs 256
11.7 Switching and Strongly Regular Graphs 258
11.8 The Two-Graph on 276 Vertices 262
Exercises 263
Notes 263
References 265
12 Line Graphs and Eigenvalues 265
12.1 Generalized Line Graphs 266
12.2 Star-Closed Sets of Lines 267
12.3 Reflections 268
12.4 Indecomposable Star-Closed Sets 270
12.5 A Generating Set 271
12.6 The Classification 272
12.7 Root Systems 274
12.8 Consequences 276
12.9 A Strongly Regular Graph 277
Exercises 278
Notes 278
References 279
13 The Laplacian of a Graph 279
13.1 The Laplacian Matrix 281
13.2 Trees 284
13.3 Representations 287
13.4 Energy and Eigenvalues 288
13.5 Connectivity 290
13.6 Interlacing 292
13.7 Conductance and Cutsets 293
13.8 How to Draw a Graph 295
13.9 The Generalized Laplacian 298
13.10 Multiplicities 300
13.11 Embeddings 302
Exercises 305
Notes 306
References 307
14 Cuts and Flows 308
14.1 The Cut Space 310
14.2 The Flow Space 312
14.3 Planar Graphs 313
14.4 Bases and Ear Decompositions 315
14.5 Lattices 316
14.6 Duality 317
14.7 Integer Cuts and Flows 319
14.8 Projections and Duals 321
14.9 Chip Firing 323
14.10 Two Bounds 324
14.11 Recurrent States 325
14.12 Critical States 326
14.13 The Critical Group 327
14.14 Voronoi Polyhedra 329
14.15 Bicycles 332
14.16 The Principal Tripartition 334
Exercises 336
Notes 338
References 338
15 The Rank Polynomial 341
15.1 Rank Functions 341
15.2 Matroids 343
15.3 Duality 344
15.4 Restriction and Contraction 346
15.5 Codes 347
15.6 The Deletion-Contraction Algorithm 349
15.7 Bicycles in Binary Codes 351
15.8 Two Graph Polynomials 353
15.9 Rank Polynomial 355
15.10 Evaluations of the Rank Polynomial 357
15.11 The Weight Enumerator of a Code 358
15.12 Colourings and Codes 359
15.13 Signed Matroids 361
15.14 Rotors 363
15.15 Submodular Functions 366
Exercises 369
Notes 371
References 372
16 Knots 373
16.1 Knots and Their Projections 374
16.2 Reidemeister Moves 376
16.3 Signed Plane Graphs 379
16.4 Reidemeister moves on graphs 381
16.5 Reidemeister Invariants 383
16.6 The Kauffman Bracket 385
16.7 The Jones Polynomial 386
16.8 Connectivity 388
Exercises 391
Notes 392
References 392
17 Knots and Eulerian Cycles 395
17.1 Eulerian Partitions and Tours 395
17.2 The Medial Graph 398
17.3 Link Components and Bicycles 400
17.4 Gauss Codes 403
17.5 Chords and Circles 405
17.6 Flipping Words 407
17.7 Characterizing Gauss Codes 408
17.8 Bent Tours and Spanning Trees 410
17.9 Bent Partitions and the Rank Polynomial 413
17.10 Maps 414
17.11 Orientable Maps 417
17.12 Seifert Circles 419
17.13 Seifert Circles and Rank 420
Exercises 423
Notes 424
References 425
Glossary of Symbols 427
Index 433