当前位置:首页 > 数理化
数理统计学  第1册  概率分布论
数理统计学  第1册  概率分布论

数理统计学 第1册 概率分布论PDF电子书下载

数理化

  • 电子书积分:20 积分如何计算积分?
  • 作 者:魏应泽著
  • 出 版 社:
  • 出版年份:1976
  • ISBN:
  • 页数:748 页
图书介绍:
《数理统计学 第1册 概率分布论》目录

第一章 集合论之基本概念 Chapter Ⅰ.Basic Concepts of Set Theory 1

1.1 各种集合之定义及其运算(Definitions and Algebra of Sets) 1

1.2 集合序列之极限(Limit of Sequence of Sets) 7

1.3 卡特氏积空间(Cartesian Product Space) 11

1.4 Borel集合体(Borel Field) 14

1.5 集合函数(Set Function) 21

习题一(Exercise Ⅰ) 27

第二章 机率空间 Chapter Ⅱ.Probability Space 31

2.1 样本空间与事象(Sample Space and Events) 31

2.2 机率函数(Probability Function) 35

2.3 分立样本空间中事象机率之计算(Probabilities of Events in Finite Sample Space) 41

2.4 条件机率(Conditional Probability) 49

2.5 机率上的独立性(Stochastic Independence) 59

2.6 独立的随机实验(Independent Random Experiments) 64

习题二(Exercise Ⅱ) 69

第三章 随机变数及其分布 Chapter Ⅲ.Random Variables and Their Distribution 77

3.1 随机变数(Random Variables) 77

3.2 分布函数(Distribution Functions) 92

3.3 机率密度函数(Probability Density Functions) 96

3.4 两随机变数之联合分布(Joint Distribution of Two Random Variables) 105

3.5 边际分布(Marginal Distributions) 117

3.6 条件分布(Conditional Distributions) 122

3.7 多变数分布(Multivariate Distributions) 129

3.8 随机变数之独立性(Independence of Random Variables) 132

习题三(Exercise Ⅲ) 143

第四章 随机变数之动差累差及其母函数 Chapter Ⅳ.Moments,Cumulants and Their Generating Functions 153

4.1 随机变数之积分(Integration of Random Variables) 153

4.2 随机变数之动差(Moments) 167

4.3 Chebyshev不等式(Chebyshev Inequality) 183

4.4 随机向量之动差(Moments of Random Vectors) 186

4.5 条件动差(Conditional Moments) 203

4.6 动差母函数(Moment Generating Functions) 211

4.7 阶乘动差母函数(Factorial Moment Generating Functions) 218

4.8 机率母函数(Probability Generating Functions) 220

4.9 累差及累差母函数(Cumulants and Cumulant Generating Functions) 223

4.10 随机向量之动差母函数(Moment Generating Functions of Random Vectors) 226

习题四(Exercise Ⅳ) 228

第五章 随机变数的函数之分布 Chapter Ⅴ.Distributions of Functions of Random Variables 235

5.1 随机变数的函数之分布及其功用(The Role of Distri-butions of Functions of Random Variables) 235

5.2 分立随机变数的函数之分布(Distributions of Functions of Discrete Random Variables) 239

5.3 分布函数法(Cumulative-distribution-function Technique) 245

5.4 变数变换法(Transformation Technique) 260

5.5 随机向量之直线变换(Linear Transformation of Random Vectors) 284

5.6 机率积分变换(Probability Integral Transform) 293

5.7 动差母函数法(Moment-generating-function Technique) 297

习题五(Exercise Ⅴ) 302

第六章 分立的机率分布 Chapter Ⅵ.Discrete Probability Distributions 309

6.1 分立均等分布(Discrete Uniform Distribution) 309

6.2 巴努利分布(Bernoulli Distribution) 311

6.3 二项分布(Binomial Distribution) 312

6.4 超几何分布(Hypergeometric Distribution) 320

6.5 波瓦松分布(Poisson Distribution) 325

6.6 几何分布(Geometric Distribution) 335

6.7 负二项分布(Negative Binomial Distribution) 338

6.8 多项分布(Multinomial Distribution) 341

6.9 其他分立的机率分布(Other Discrete Distributions) 344

习题六(Exercise Ⅵ) 347

第七章 连续的机率分布 Chapter Ⅶ.Continuous Probability Distributions 351

7.1 均等或矩形分布(Uniform or Rectangular Distribution) 351

7.2 甘马分布(Gamma Distribution) 358

7.3 贝达分布(Beta Distribution) 363

7.4 常态分布(Normal Distribution) 365

7.5 F分布(F Distribution) 373

7.6 t分布(Student's t Distribution) 380

7.7 柯喜分布(Cauchy Distribution) 385

7.8 指数分布及亚兰分布(Exponential and Erlang Distributions) 388

7.9 卫浦分布(Weibull Distribution) 392

7.10 皮尔逊分布体系(Pearsonian System of Distributions) 395

7.11 其他连续的机率分布(Other Continuous Probability Distributions) 399

习题七(Exercise Ⅶ) 403

第八章 特性函数 Chapter Ⅷ.Characteristic Function 409

8.1 复数随机变数(Complex-valued Random Variables) 409

8.2 特性函数之性质(Properties of Characteristic Function) 412

8.3 特性函数与动差之关系(Characteristic Function and Moments) 414

8.4 独立随机变数的直线型组合之特性函数(The Charac-teristic Function of a Linear Combination of Inde-pendent Random Variables) 424

8.5 由特性函数以决定机率分布之方法(Determination of the Distribution Function by the Characteristic Function) 427

8.6 两个随机变数之联合特性函数(The Joint Characteristic Function of Two Random Variables) 441

8.7 各种特殊的机率分布之特性函数(Characteristic Func-tions of Special Probability Distributions) 447

习题八(Exercise Ⅷ) 451

第九章 随机变数序列之收敛与极限分布 Chapter Ⅸ.Convergence of a Sequence of Random Variables and Limit Distributions 457

9.1 导论(Introduction) 457

9.2 机率收敛(Convergence in Probability) 459

9.3 大数强法则(Strong Law of Large Numbers) 469

9.4 分布函数序列之收敛(Convergence of a Sequence of Distribution Functions) 496

9.5 各种不同收敛间之关系(Relationships Among the Various Modes of Convergence) 511

9.6 中心极限定理(Central Limit Theorems) 517

9.7 随机变数之函数序列的收敛(Convergence of Sequences of Functions of Random Variables) 537

9.8 卡方分布之较正确的渐近常态分布(Asymptotically Normal Distribution of Chi-square Variate) 545

习题九(Exercise Ⅸ) 548

10.1 双变值常态分布(Bivariate Normal Distribution) 553

第十章 多变值常态分布 Chapter Ⅹ.Multivariate Normal Distribution 553

10.2 多变值常态分布之定义及其由来(Definition and Deri-vation of the Multivariate Normal Distribution) 564

10.3 边际分布及直线型组合之分布(Marginal Distributions and the Distribution of Linear Combinations of Normally Distributed Variates) 567

10.4 条件分布与偏相关及偏回归(Conditional Distribution,Partial Correlation and Partial Regression) 573

10.5 复相关系数(Multiple Correlation Coefficient) 587

10.6 多变值常态分布之特性函数(Characteristic Function of the Multivariate Normal Distribution) 593

10.7 二次式之分布(Distribution of Quadratic Forms) 597

10.8 二次式之独立性(Independence of Quadratic Forms) 606

10.9 多变值分布之中心极限定理(Central Limit Theorems of the Multivariate Distributons) 619

习题十(Exercise Ⅹ) 624

第十一章 顺序统计式 Chapter Ⅺ.Order Statistics 629

11.1 顺序特徵数(Order Parameters) 629

11.2 顺序统计式之定义及其分布(Definition and Distributions of Order Statistics) 632

11.3 群体等分位量之信赖区间(Confidence Intervals for Population Quantiles) 652

11.4 群体分布之容许区间(Tolerance Intervals for Population Distributions) 658

11.5 样本变距及学生化变距之分布(Distributions of Sample Range and Studentized Range) 664

11.6 样本分布函数(Sample Distribution Function) 668

11.7 样本等分位数之渐近分布(Asymptotic Distributions of Sample Quantiles) 677

11.8 固定顺位之顺序统计式的渐近分布(Asymptotic Distribution of an Order Statistic with Fixed Rank) 688

习题十一(Exercise Ⅺ) 692

参考文献(References) 697

附表(Tables) 701

附表1.累加二项分布(Cumulative Binomial Distribution) 701

附表2.累加波瓦松分布(Cumulative Poisson Distribution) 720

附表3.常态机率密度函数值(Ordinates of the Normal Density Function) 726

附表4.累加常态分布(Cumulative Normal Distribution) 727

附表5.累加卡方分布(Cumulative Chi-square Distribution) 728

附表6.累加t分布(Cumulative Student's t Distribution) 729

附表7.累加F分布(Cumulative F Distribution) 730

索引(Index) 735

返回顶部