Internal combustion engine fundamentalsPDF电子书下载
- 电子书积分:24 积分如何计算积分?
- 作 者:Heywood;John B.
- 出 版 社:McGrawHill
- 出版年份:1988
- ISBN:007028637X
- 页数:930 页
Chapter 1 Engine Types and Their Operation 1
1.1 Introduction and Historical Perspective 1
1.2 Engine Classifications 7
1.3 Engine Operating Cycles 9
1.4 Engine Components 12
1.5 Spark-Ignition Engine Operation 15
1.6 Examples of Spark-Ignition Engines 19
1.7 Compression-Ignition Engine Operation 25
1.8 Examples of Diesel Engines 31
1.9 Stratified-Charge Engines 37
Chapter 2 Engine Design and Operating Parameters 42
2.1 Important Engine Characteristics 42
2.2 Geometrical Properties of Reciprocating Engines 43
2.3 Brake Torque and Power 45
2.4 Indicated Work Per Cycle 46
2.5 Mechanical Efficiency 48
2.6 Road-Load Power 49
2.7 Mean Effective Pressure 50
2.8 Specific Fuel Consumption and Efficiency 51
2.9 Air/Fuel and Fuel/Air Ratios 53
2.10 Volumetric Efficiency 53
2.11 Engine Specific Weight and Specific Volume 54
2.12 Correction Factors for Power and Volumetric Efficiency 54
2.13 Specific Emissions and Emissions Index 56
2.14 Relationships between Performance Parameters 56
2.15 Engine Design and Performance Data 57
Chapter 3 Thermochemistry of Fuel-Air Mixtures 62
3.1 Characterization of Flames 62
3.2 Ideal Gas Model 64
3.3 Composition of Air and Fuels 64
3.4 Combustion Stoichiometry 68
3.5 The First Law of Thermodynamics and Combustion 72
3.5.1 Energy and Enthalpy Balances 72
3.5.2 Enthalpies of Formation 76
3.5.3 Heating Values 78
3.5.4 Adiabatic Combustion Processes 80
3.5.5 Combustion Efficiency of an Internal Combustion Engine 81
3.6 The Second Law of Thermodynamics Applied to Combustion 83
3.6.1 Entropy 83
3.6.2 Maximum Work from an Internal Combustion Engine and Efficiency 83
3.7 Chemically Reacting Gas Mixtures 85
3.7.1 Chemical Equilibrium 86
3.7.2 Chemical Reaction Rates 92
Chapter 4 Properties of Working Fluids 100
4.1 Introduction 100
4.2 Unburned Mixture Composition 102
4.3 Gas Property Relationships 107
4.4 A Simple Analytic Ideal Gas Model 109
4.5 Thermodynamic Charts 112
4.5.1 Unburned Mixture Charts 112
4.5.2 Burned Mixture Charts 116
4.5.3 Relation between Unburned and Burned Mixture Charts 123
4.6 Tables of Properties and Composition 127
4.7 Computer Routines for Property and Composition Calculations 130
4.7.1 Unburned Mixtures 130
4.7.2 Burned Mixtures 135
4.8 Transport Properties 141
4.9 Exhaust Gas Composition 145
4.9.1 Species Concentration Data 145
4.9.2 Equivalence Ratio Determination from Exhaust Gas Constituents 148
4.9.3 Effects of Fuel/Air Ratio Nonuniformity 152
4.9.4 Combustion Inefficiency 154
Chapter 5 Ideal Models of Engine Cycles 161
5.1 Introduction 161
5.2 Ideal Models of Engine Processes 162
5.3 Thermodynamic Relations for Engine Processes 164
5.4 Cycle Analysis with Ideal Gas Working Fluid with c v and c p Constant 169
5.4.1 Constant-Volume Cycle 169
5.4.2 Limited- and Constant-Pressure Cycles 172
5.4.3 Cycle Comparison 173
5.5 Fuel-Air Cycle Analysis 177
5.5.1 SI Engine Cycle Simulation 178
5.5.2 CI Engine Cycle Simulation 180
5.5.3 Results of Cycle Calculations 181
5.6 Overexpanded Engine Cycles 183
5.7 Availability Analysis of Engine Processes 186
5.7.1 Availability Relationships 186
5.7.2 Entropy Changes in Ideal Cycles 188
5.7.3 Availability Analysis of Ideal Cycles 189
5.7.4 Effect of Equivalence Ratio 192
5.8 Comparison with Real Engine Cycles 193
Chapter 6 Gas Exchange Processes 205
6.1 Inlet and Exhaust Prccesses in the Four-Stroke Cycle 206
6.2 Volumetric Efficiency 209
6.2.1 Quasi-Static Effects 209
6.2.2 Combined Quasi-Static and Dynamic Effects 212
6.2.3 Variation with Speed,and Valve Area,Lift,and Timing 216
6.3 Flow Through Valves 220
6.3.1 Poppet Valve Geometry and Timing 220
6.3.2 Flow Rate and Discharge Coefficients 225
6.4 Residual Gas Fraction 230
6.5 Exhaust Gas Flow Rate and Temperature Variation 231
6.6 Scavenging in Two-Stroke Cycle Engines 235
6.6.1 Two-Stroke Engine Configurations 235
6.6.2 Scavenging Parameters and Models 237
6.6.3 Actual Scavenging Processes 240
6.7 Flow Through Ports 245
6.8 Supercharging and Turbocharging 248
6.8.1 Methods of Power Boosting 248
6.8.2 Basic Relationships 249
6.8.3 Compressors 255
6.8.4 Turbines 263
6.8.5 Wave-Compression Devices 270
Chapter 7 SI Engine Fuel Metering and Manifold Phenomena 279
7.1 Spark-Ignition Engine Mixture Requirements 279
7.2 Carburetors 282
7.2.1 Carburetor Fundamentals 282
7.2.2 Modern Carburetor Design 285
7.3 Fuel-Injection Systems 294
7.3.1 Multipoint Port Injection 294
7.3.2 Single-Point Throttle-Body Injection 299
7.4 Feedback Systems 301
7.5 Flow Past Throttle Plate 304
7.6 Flow in Intake Manifolds 308
7.6.1 Design Requirements 308
7.6.2 Air-Flow Phenomena 309
7.6.3 Fuel-Flow Phenomena 314
Chapter 8 Charge Motion within the Cylinder 326
8.1 Intake Jet Flow 326
8.2 Mean Velocity and Turbulence Characteristics 330
8.2.1 Definitions 330
8.2.2 Application to Engine Velocity Data 336
8.3 Swirl 342
8.3.1 Swirl Measurement 343
8.3.2 Swirl Generation during Induction 345
8.3.3 Swirl Modification within the Cylinder 349
8.4 Squish 353
8.5 Prechamber Engine Flows 357
8.6 Crevice Flows and Blowby 360
8.7 Flows Generated by Piston-Cylinder Wall Interaction 365
Chapter 9 Combustion in Spark-Ignition Engines 371
9.1 Essential Features of Process 371
9.2 Thermodynamic Analysis of SI Engine Combustion 376
9.2.1 Burned and Unburned Mixture States 376
9.2.2 Analysis of Cylinder Pressure Data 383
9.2.3 Combustion Process Characterization 389
9.3 Flame Structure and Speed 390
9.3.1 Experimental Observations 390
9.3.2 Flame Structure 395
9.3.3 Laminar Burning Speeds 402
9.3.4 Flame Propagation Relations 406
9.4 Cyclic Variations in Combustion,Partial Burning,and Misfire 413
9.4.1 Observations and Definitions 413
9.4.2 Causes of Cycle-by-Cycle and Cylinder-to-Cylinder Variations 419
9.4.3 Partial Burning,Misfire,and Engine Stability 424
9.5 Spark Ignition 427
9.5.1 Ignition Fundamentals 427
9.5.2 Conventional Ignition Systems 437
9.5.3 Alternative Ignition Approaches 443
9.6 Abnormal Combustion:Knock and Surface Ignition 450
9.6.1 Description of Phenomena 450
9.6.2 Knock Fundamentals 457
9.6.3 Fuel Factors 470
Chapter 10 Combustion in Compression-Ignition Engines 491
10.1 Essential Features of Process 491
10.2 Types of Diesel Combustion Systems 493
10.2.1 Direct-Injection Systems 493
10.2.2 Indirect-Injection Systems 494
10.2.3 Comparison of Different Combustion Systems 495
10.3 Phenomenological Model of Compression-Ignition Engine Combustion 497
10.3.1 Photographic Studies of Engine Combustion 497
10.3.2 Combustion in Direct-Injection,Multispray Systems 503
10.3.3 Application of Model to Other Combustion Systems 506
10.4 Analysis of Cylinder Pressure Data 508
10.4.1 Combustion Efficiency 509
10.4.2 Direct-Injection Engines 509
10.4.3 Indirect-Injection Engines 514
10.5 Fuel Spray Behavior 517
10.5.1 Fuel Injection 517
10.5.2 Overall Spray Structure 522
10.5.3 Atomization 525
10.5.4 Spray Penetration 529
10.5.5 Droplet Size Distribution 532
10.5.6 Spray Evaporation 535
10.6 Ignition Delay 539
10.6.1 Definition and Discussion 539
10.6.2 Fuel Ignition Quality 541
10.6.3 Autoignition Fundamentals 542
10.6.4 Physical Factors Affecting Delay 546
10.6.5 Effect of Fuel Properties 550
10.6.6 Correlations for Ignition Delay in Engines 553
10.7 Mixing-Controlled Combustion 555
10.7.1 Background 555
10.7.2 Spray and Flame Structure 555
10.7.3 Fuel-Air Mixing and Burning Rates 558
Chapter 11 Pollutant Formation and Control 567
11.1 Nature and Extent of Problem 567
11.2 Nitrogen Oxides 572
11.2.1 Kinetics of NO Formation 572
11.2.2 Formation of NO2 577
11.2.3 NO Formation in Spark-Ignition Engines 578
11.2.4 NOx Formation in Compression-Ignition Engines 586
11.3 Carbon Monoxide 592
11.4 Unburned Hydrocarbon Emissions 596
11.4.1 Background 596
11.4.2 Flame Quenching and Oxidation Fundamentals 599
11.4.3 HC Emissions from Spark-Ignition Engines 601
11.4.4 Hydrocarbon Emission Mechanisms in Diesel Engines 620
11.5 Particulate Emissions 626
11.5.1 Spark-Ignition Engine Particulates 626
11.5.2 Characteristics of Diesel Particulates 626
11.5.3 Particulate Distribution within the Cylinder 631
11.5.4 Soot Formation Fundamentals 635
11.5.5 Soot Oxidation 642
11.5.6 Adsorption and Condensation 646
11.6 Exhaust Gas Treatment 648
11.6.1 Available Options 648
11.6.2 Catalytic Converters 649
11.6.3 Thermal Reactors 657
11.6.4 Particulate Traps 659
Chapter 12 Engine Heat Transfer 668
12.1 Importance of Heat Transfer 668
12.2 Modes of Heat Transfer 670
12.2.1 Conduction 670
12.2.2 Convection 670
12.2.3 Radiation 671
12.2.4 Overall Heat-Transfer Process 671
12.3 Heat Transfer and Engine Energy Balance 673
12.4 Convective Heat Transfer 676
12.4.1 Dimensional Analysis 676
12.4.2 Correlations for Time-Averaged Heat Flux 677
12.4.3 Correlations for Instantaneous Spatial Average Coefficients 678
12.4.4 Correlations for Instantaneous Local Coefficients 681
12.4.5 Intake and Exhaust System Heat Transfer 682
12.5 Radiative Heat Transfer 683
12.5.1 Radiation from Gases 683
12.5.2 Flame Radiation 684
12.5.3 Prediction Formulas 688
12.6 Measurements of Instantaneous Heat-Transfer Rates 689
12.6.1 Measurement Methods 689
12.6.2 Spark-Ignition Engine Measurements 690
12.6.3 Diesel Engine Measurements 692
12.6.4 Evaluation of Heat-Transfer Correlations 694
12.6.5 Boundary-Layer Behavior 697
12.7 Thermal Loading and Component Temperatures 698
12.7.1 Component Temperature Distributions 698
12.7.2 Effect of Engine Variables 701
Chapter 13 Eng ne Friction and Lubrication 712
13.1 Background 712
13.2 Definitions 714
13.3 Friction Fundamentals 715
13.3.1 Lubricated Friction 715
13.3.2 Turbulent Dissipation 719
13.3.3 Total Friction 719
13.4 Measurement Methods 719
13.5 Engine Friction Data 722
13.5.1 SI Engines 722
13.5.2 Diesel Engines 724
13.6 Engine Friction Components 725
13.6.1 Motored Engine Breakdown Tests 725
13.6.2 Pumping Friction 726
13.6.3 Piston Assembly Friction 729
13.6.4 Crankshaft Bearing Friction 734
13.6.5 Valve Train Friction 737
13.7 Accessory Power Requirements 739
13.8 Lubrication 740
13.8.1 Lubrication System 740
13.8.2 Lubricant Requirements 741
Chapter 14 Modeling Real Engine Flow and Combustion Processes 748
14.1 Purpose and Classification of Models 748
14.2 Governing Equations for Open Thermodynamic System 750
14.2.1 Conservation of Mass 750
14.2.2 Conservation of Energy 751
14.3 Intake and Exhaust Flow Models 753
14.3.1 Background 753
14.3.2 Quasi-Steady Flow Models 753
14.3.3 Filling and Emptying Methods 754
14.3.4 Gas Dynamic Models 756
14.4 Thermodynamic-Based In-Cylinder Models 762
14.4.1 Background and Overall Model Structure 762
14.4.2 Spark-Ignition Engine Models 766
14.4.3 Direct-Injection Engine Models 778
14.4.4 Prechamber Engine Models 784
14.4.5 Multicylinder and Complex Engine System Models 789
14.4.6 Second Law Analysis of Engine Processes 792
14.5 Fluid-Mechanic-Based Multidimensional Models 797
14.5.1 Basic Approach and Governing Equations 797
14.5.2 Turbulence Models 800
14.5.3 Numerical Methodology 803
14.5.4 Flow Field Predictions 807
14.5.5 Fuel Spray Modeling 813
14.5.6 Combustion Modeling 816
Chapter 15 Engine Operating Characteristics 823
15.1 Engine Performance Parameters 823
15.2 Indicated and Brake Power and MEP 824
15.3 Operating Variables That Affect SI Engine Performance,Efficiency,and Emissions 827
15.3.1 Spark Timing 827
15.3.2 Mixture Composition 829
15.3.3 Load and Speed 839
15.3.4 Compression Ratio 841
15.4 SI Engine Combustion Chamber Design 844
15.4.1 Design Objectives and Options 844
15.4.2 Factors That Control Combustion 846
15.4.3 Factors That Control Performance 850
15.4.4 Chamber Octane Requirement 852
15.4.5 Chamber Optimization Strategy 857
15.5 Variables That Affect CI Engine Performance,Efficiency,and Emissions 858
15.5.1 Load and Speed 858
15.5.2 Fuel-Injection Parameters 863
15.5.3 Air Swirl and Bowl-in-Piston Design 866
15.6 Supercharged and Turbocharged Engine Performance 869
15.6.1 Four-Stroke Cycle SI Engines 869
15.6.2 Four-Stroke Cycle CI Engines 874
15.6.3 Two-Stroke Cycle SI Engines 881
15.6.4 Two-Stroke Cycle CI Engines 883
15.7 Engine Performance Summary 886
Appendixes 899
A Unit Conversion Factors 899
B Ideal Gas Relationships 902
B.1 Ideal Gas Law 902
B.2 The Mole 903
B.3 Thermodynamic Properties 903
B.4 Mixtures of Ideal Gases 905
C Equations for Fluid Flow through a Restriction 906
C.1 Liquid Flow 907
C.2 Gas Flow 907
D Data on Working Fluids 911
Index 917
- 《数据失控》(美)约翰·切尼-利波尔德(John Cheney-Lippold)著 2019
- 《黑格尔的自由主义批判》(美)史蒂芬·B.史密斯(StevenB.Smith) 2019
- 《深奥的简洁》(英)约翰·格里宾(John Gribbin)著 2020
- 《中国经学史》(美)韩大伟(David B. Honey)著 2019
- 《认知行为治疗的个案概念化》李飞,刘光亚,位照国译;(美国)杰奎琳·B.珀森斯 2019
- 《铸造手册大全 金属铸造工艺、冶金技术和设计 第6册 熔炼·造型·铸造·凝固》John Campbell主编 2018
- 《儿童 青少年与媒体》(美)维克托·C.斯特拉斯伯格,(美)芭芭拉·J.威尔逊,(美)埃米·B.乔丹著 2018
- 《论自由》(英)约翰·穆勒(John Stuart Mill)著 2019
- 《DETECTION AND SPECTROMETRY OF FAINT LIGHT》JOHN MEABURN
- 《大众传播媒介 (第十1版)=THE MEDIA OF MASS COMMUNICATION (ELEVENTH EDITION)》(美)约翰·维维安(John Vivian)著 2020