INTRODUCTION TO THEORETICAL PHYSICSPDF电子书下载
- 电子书积分:17 积分如何计算积分?
- 作 者:JOHN C.SLATER PH.D.
- 出 版 社:MCGRAW-HILL BOOK COMPANY INC
- 出版年份:2222
- ISBN:
- 页数:576 页
CHAPTER Ⅰ POWER SERIES 1
INTRODUCTION 1
1.POWER SERIES 2
2.SMALL QUANTITIES OF VARIOUS ORDERS 3
3.TAYLOR'S EXPANSION 4
4.THE BINOMIAL THEOREM 4
5.EXPANSION ABOUT AN ARBITRARY POINT 4
6.EXFANSION ABOUT A POLE 5
7.CONVERGENCE 5
PROBLEMS 8
CHAPTER Ⅱ POWER SERIES METHOD FOR DIFFERENTIAL EQUATICNS 10
INTRODUCTION 10
8.THE FALLING BODY 11
9.FALLING BODY WITH VISCOSITY 11
10.PARTICULAR AND GENERAL SOLUTIONS FOR FALLING BODY WITH VISCOSITY 14
11.ELECTRIC CIRCUIT CONTAINING RESISTANCE AND INDUCTANCE 16
PROBLEMS 17
CHAPTER Ⅲ POWER SERIES AND EXPONENTIAL METHODS FOR SIMPLE HARMONIC VIBRATIONS 19
INTRODUCTION 19
12.PARTICLE WITH LINEAR RESTORING FORCE 19
13.OSCILLATING ELECTRIC CIRCUIT 20
14.THE EXPONENTIAL METHOD OF SOLUTION 21
15.COMPLEX EXPONENTIALS 22
16.COMPLEX NUMBERS 23
17.APPLICATION OF COMPLEX NUMBERS TO VIBRATION PROBLEMS 25
PROBLEMS 26
CHAPTER Ⅳ DAMPED VIBRATIONS,FORCED VIBRATIONS,AND RESONANCE 27
INTRODUCTION 27
18.DAMPED VIBRATIONAL MOTION 27
19.DAMPED ELECTRICAL OSCILLATIONS 28
20.INITIAL CONDITIONS FOR TRANSIENTS 29
21.FORCED VIBRATIONS AND RESONANCE 29
22.MECHANICAL RESONANCE 30
23.ELECTRICAL RESONANCE 31
24.SUPERPOSITION OF TRANSIENT AND FORCED MOTION 33
25.MOTION UNDER GENERAL EXTERNAL FORCES 35
26.GENERALIZATIONS REGARDING LINEAR DIFFERENTIAL EQUATIONS 36
PROBLEMS 37
CHAPTER Ⅴ ENERGY 39
INTRODUCTION 39
27.MECHANICAL ENERGY 40
28.USE OF THE POTENTIAL FOR DISCUSSING THE MOTION OF A SYSTEM 42
29.THE ROLLING-BALL ANALOGY 45
30.MOTION IN SEVERAL DIMENSIONS 46
PROBLEMS 46
CHAPTER Ⅵ VECTOR FORCES AND POTENTIALS 48
INTRODUCTION 48
31.VECTORS AND THEIR COMPONENTS 48
32.SCALAR PRODUCT OF TWO VECTORS 49
33.VECTOR PRODUCT OF TWO VECTORS 50
34.VECTOR FIELDS 51
35.THE ENERGY THEOREM IN THREE DIMENSIONS 52
36.LINE INTEGRALS AND POTENTIAL ENERGY 52
37.FORCE AS GRADIENT OF POTENTIAL 53
38.EQUIPOTENTIAL SURFACES 54
39.THE CURL AND THE CONDITION FOR A CONSERVATIVE SYSTEM 55
40.THE SYMBOLIC VECTOR ▽ 55
PROBLEMS 56
CHapter Ⅶ LAGRANGE'S EQUATIONS AND PLANETARY MOTION 58
INTRODUCTION 58
41.LAGRANGE'S EQUATIONS 58
42.PLANETARY MOTION 60
43.ENERGY METHOD FOR RADIAL MOTION IN CENTRAL FIELD 61
44.ORBITS IN CENTRAL MOTION 62
45.JUSTIFICATION OF LAGRANGE'S METHOD 64
PROBLEMS 67
CHAPTER Ⅷ GENERALIZED MOMENTA AND HAMILTON'S EQUATIONS 69
INTRODUCTION 69
46.GENERALIZED FORCES 69
47.GENERALIZED MOMENTA 70
48.HAMILTON'S EQUATIONS OF MOTION 71
49.GENERAL PROOF OF HAMILTON'S EQUATIONS 72
50.EXAMPLE OF HAMILTON'S EQUATIONS 74
51.APPLICATIONS OF LAGRANGE'S AND HAMILTON'S EQUATIONS 75
PROBLEMS 76
CHAPTER Ⅸ PHASE SPACE AND THE GENERAL MOTION OF PARTICLES 79
INTRODUCTION 79
52.THE PHASE SPACE 80
53.PHASE SPACE FOR THE LINEAR OSCILLATOR 81
54.PHASE SPACE FOR CENTRAL MOTION 82
55.NONCENTRAL TWO-DIMENSIONAL MOTION 83
56.CONFIGURATION SPACE AND MOMENTUM SPACE 83
57.THE TWO-DIMENSIONAL OSCILLATOR 84
58.METHODS OF SOLUTION 86
59.CONTACT TRANSFORMATIONS AND ANGLE VAROABLES 87
60.METHODS OF SOLUTION FOR NONPERIODIC MOTIONS 90
PROBLEMS 90
CHAPTER Ⅹ THE MOTION OF RIGID BODIES 92
INTRODUCTION 92
61.ELEMENTARY THEORY OF PRECESSING TOP 92
62.ANGULAR MOMENTUM,MOMENT OF INERTIA,AND KINETIC ENERGY 94
63.THE ELLIPSOID OF INERTIA;PRINCIPAL AXES OF INERTIA 95
64.THE EQUATIONS OF MOTION 96
65.EULER'S EQUATIONS 98
66.TORQUE-FREE MOTION OF A SYMMETRIC RIGID BODY 98
67.EULER'S ANGLES 100
68.GENERAL MOTION OF A SYMMETRICAL TOP UNDER GRAVITY 102
69.PRECESSION AND NUTATION 104
PROBLEMS 105
CHAPTER Ⅺ COUPLED SYSTEMS AND NORMAL COORDINATES 107
INTRODUCTION 107
70.COUPLED OSCILLATORS 107
71.NORMAL COORDINATES 111
72.RELATION OF PROBLEM OF COUPLED SYSTEMS TO TWO-DIMEN-SIONAL OSCILLATOR 114
73.THE GENERAL PROBLEM OF THE MOTION OF SEVERAL PARTICLES 117
PROBLEMS 118
CHAPTER Ⅻ THE VIBRATING STRING,AND FOURIER SERIES 120
INTRODUCTION 120
74.DIFFERENTIAL EQUATION OF THE VIBRATING STRING 120
75.THE INITIAL CONDITIONS FOR THE STRING 122
76.FOURIER SERIES 123
77.COEFFICIENTS OF FOURIER SERIES 124
78.CONVERGENCE OF FOURIER SERIES 125
79.SINE AND COSINE SERIES,WITH APPLICATION TO THE STRING 126
80.THE STRING AS A LIMITING PROBLEM OF VIBRATION OF PARTICLES 128
81.LAGRANGE'S EQUATIONS FOR THE WEIGHTED STRING 131
82.CONTINUOUS STRING AS LIMITING CASE 131
PROBLEMS 132
CHAPTER ⅩⅢ NORMAL COORDINATES AND THE VIBRATING STRING 134
INTRODUCTION 134
83.NORMAL COORDINATES 134
84.NORMAL COORDINAES AND FUNCTION SPACE 137
85.FOURLER ANALYSIS IN FUNCTION SPACE 139
86.EQUATIONS OF MOTION IN NORMAL COORDINATES 140
87.THE VIBRATING STRING WITH FRICTION 142
PROBLEMS 144
CHAPTER ⅩⅣ THE STRING WITH VARIABLE TENSION AND DENSITY 146
INTRODUCTION 146
88.DIFFERENTIAL EQUATION FOR THE VARIABLE STRING 146
89.APPROXIMATE SOLUTION FOR SLOWLY CHANGING DENSITY AND TENSION 147
90.PROGRESSIVE WAVES AND STANDING WAVES 149
91.ORTHOGONALITY OF NORMAL FUNCTIONS 151
92.EXPANSION OF AN ARBITRARY FUNCTION USING NORMAL FUNC-TIONS 152
93.PERTURBATION THEORY 154
94.REFLECTION OF WAVES FROM A DISCONTINUITY 156
PROBLEMS 158
CHAPTER ⅩⅤ THE VIBRATING MEMBRANE 160
INTRODUCTION 160
95.BOUNDARY CONDITIONS ON THE RECTANGULAR MEMBRANE 160
96.THE NODES IN A VIBRATING MEMBRANE 162
97.INITIAL CONDITIONS 162
98.THE METHOD OF SEPARATION OF VARIABLES 163
99.THE CIRCULAR MEMBRANE 164
100.THE LAPLACIAN IN POLAR COORDINATES 164
101.SOLUTION OF THE DIFFERENTIAL EQUATION BY SEPARATION 165
102.BOUNDARY CONDITIONS 166
103.PHYSICAL NATURE OF THE SOLUTION 167
104.INITIAL CONDITION AT t=O 168
105.PROOF OF ORTHOGONALITY OF THE J'S 169
PROBLEMS 170
CHAPTER ⅩⅥ STRESSES,STRAINS,AND VIBRATIONS OF AN ELASTIC SOLID 172
INTRODUCTION 172
106.STRESSES,BODY AND SURFACE FORCES 172
107.EXAMPLES OF STRESSES 174
108.THE EQUATION OF MOTION 175
109.TRANSVERSE WAVES 176
110.LONGITUDINAL WAVES 178
111.GENERAL WAVE PROPAGATION 179
112.STRAINS AND HOOKE'S LAW 180
113.YOUNG'S MODULUS 182
PROBLEMS 183
CHAPTER ⅩⅦ FLOW OF FLUIDS 185
INTRODUCTION 185
114.VELOCITY,FLUX DENSITY,AND LINES OF FLOW 185
115.THE EQUATION OF CONTINUITY 186
116.GAUSS'S THEOREM 187
117.LINES OF FLOW TO MEASURE RATE OF FLOW 188
118.IRROTATIONAL FLOW AND THE VELOCITY POTENTIAL 188
119.EULER'S EQUATIONS OF MOTION FOR IDEAL FLUIDS 190
120.IRROTATIONAL FLOW AND BERNOULLI'S EQUATION 191
121.VISCOUS FLUIDS 192
122.POISEUILLE'S LAW 194
PROBLEMS 195
CHAPTER ⅩⅧ HEAT FLOW 197
INTRODUCTION 197
123.DIFFERENTIAL EQUATION OF HEAT FLOW 197
124.THE STEADY FLOW OF HEAT 198
125.FLOW VECTORS IN GENERALIZED COORDINATES 199
126.GRADIENT IN GENERALIZED COORDINATES 200
127.DIVERGENCE IN GENERALIZED COORDINATES 200
128.LAPLACIAN 201
129.STEADY FLOW OF HEAT IN A SPHERE 201
130.SPHERICAL HARMONICS 202
131.FOURIER'S METHOD FOR THE TRANSIENT FLOW OF HEAT 203
132.INTEGRAL METHOD FOR HEAT FLOW 205
PROBLEMS 209
CHAPTER ⅩⅨ ELECTROSTATICS,GREEN'S THEOREM,AND POTENTIAL THEORY 210
INTRODUCTION 210
133.THE DIVERGENCE OF THE FIELD 210
134.THE POTENTIAL 211
135.ELECTROSTATIC PROBLEMS WITHOUT CONDUCTORS 212
136.ELECTROSTATIC PROBLEMS WITH CONDUCTORS 215
137.GREEN'S THEOREM 217
138.PROOF OF SOLUTION OF POISSON'S EQUATION 217
139.SOLUTION OF POISSON'S EQUATION IN A FINITE REGION 220
140.GREEN'S DISTRIBUTION 221
141.GREEN'S METHOD OF SOLVING DIFFERENTIAL EQUATIONS 222
PROBLEMS 223
CHAPTER ⅩⅩ MAGNETIC FIELDS,STOKES'S THEOREM,AND VECTOR POTENTIAL 225
INTRODUCTION 225
142.THE MAGNETIC FIELD OF CURRENTS 226
143.FIELD OF A STRAIGHT WIRE 228
144.STOKES'S THEOREM 229
145.THE CURL IN CURVILINEAR COORDINATES 229
146.APPLICATIONS OF STOKES'S THEOREM 230
147.EXAMPLE:MAGNETIC FIELD IN A SOLENOID 231
148.THE VECTOR POTENTIAL 231
149.THE BIOT-SAVART LAW 233
PROBLEMS 234
CHAPTER ⅩⅪ ELECTROMAGNETIC INDUCTION AND MAXWELL'S EQUATIONS 235
INTRODUCTION 235
150.THE DIFFERENTIAL EQUATION FOR ELECTROMAGNETIC INDUCTION 235
151.THE DISPLACEMENT CURRENT 236
152.MAXWELL'S EQUATIONS 239
153.THE VECTOR AND SCALAR POTENTIALS 241
PROBLEMS 244
CHAPTER ⅩⅫ ENERGY IN THE ELECTROMAGNETIC FIELD 246
INTRODUCTION 246
154.ENERGY IN A CONDENSER 246
155.ENERGY IN THE ELECTRIC FIELD 247
156.ENERGY IN A SOLENOID 248
157.ENERGY DENSITY AND ENERGY FLOW 249
158.POYNTING'S THEOREM 250
159.THE NATURE OF AN E.M.F. 250
160.EXAMPLES OF POYNTING'S VECTOR 251
161.ENERGY IN A PLANE WAVE 253
162.PLANE WAVES IN METALS 255
PROBLEMS 256
CHAPTER ⅩⅩⅢ REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES 258
INTRODUCTION 258
163.BOUNDARY CONDITIONS AT A SURFCE OF DISCONTINUITY 258
164.THE LAWS OF REFLECTION AND REFRACTION 259
165.REFLECTION COEFFICIENT AT NORMAL INCIDENCE 260
166.FRESNEL'S EQUATIONS 262
167.THE POLARIZING ANGLE 264
168.TOTAL REFLECTION 265
169.THE OPTICAL BEHAVIOR OF METALS 267
PROBLEMS 268
CHAPTER ⅩⅩⅣ ELECTRON THEORY AND DISPERSION 270
INTRODUCTION 270
170.POLARIZATION AND DIELECTRIC CONSTANT 271
171.THE RELATIONS OF P,E,AND D 273
172.POLARIZABILITY AND DIELECTRIC CONSTANT OF GASES 275
173.DISPERSION IN GASES 275
174.DISPERSION OF SOLIDS AND LIQUIDS 278
175.DISPERSION OF METALS 280
PROBLEMS 283
CHAPTER ⅩⅩⅤ SPHERICAL ELECTROMAGNETIC WAVES 286
INTRODUCTION 286
176.SPHERICAL SOLUTIONS OF THE WAVE EQUATION 286
177.SCALAR POTENTIAL FOR OSCILLATING DIPOLE 288
178.VECTOR POTENTIAL 289
179.THE FIELDS 290
180.THE HERTZ VECTOR 291
181.INTENSITY OF RADIATION FROM A DIPOLE 293
182.SCATTERING OF LIGHT 293
183.POLARIZATION OF SCATTERED LIGHT 295
184.COHERENCE AND INCOHERENCE OF LIGHT 295
185.COHERENCE AND THE SPECTRUM 298
186.COHERENCE OF DIFFERENT SOURCES 299
PROBLEMS 299
CHAPTER ⅩⅩⅥ HUYGENS'PRINCIPLE AND GREEN'S THEOREM 302
INTRODUCTION 302
187.THE RETARDED POTENTIALS 303
188.MATHEMATICAL FORMULATION OF HUYGENS'PRINCIPLE 305
189.APPLICATION TO OPTICS 307
190.INTEGRATION FOR A SPHERICAL SURFACE BY FRESNEL'S ZONES 308
191.THE USE OF HUYGENS'PRINCIPLE 310
192.HUYGENS'PRINCIPLE FOR DIFFRACTION PROBLEMS 310
193.QUALITATIVE DISCUSSION OF DIFFRACTION,USING FRESNEL'S ZONES 311
PROBLEMS 314
CHAPTER ⅩⅩⅦ FRESNEL AND FRAUNHOFER DIFFRACTION 315
INTRODUCTION 315
194.COMPARISON OF FRESNEL AND FRAUNHOFER DIFFRACTION 315
195.FRESNEL DIFFRACTION FROM A SLIT 319
196.CORNU'S SPIRAL 320
197.FRAUNHOFER DIFFRACTION FROM RECTANGULAR SLIT 323
198.THE CIRCULAR APERTURE 324
199.RESOLVING POWER OF A LENS 325
200.DIFFRACTION FROM SEVERAL SLITS;THE DIFFRACTION GRATING 326
PROBLEMS 328
CHAPTER ⅩⅩⅧ WAVES,RAYS,AND WAVE MECHANICS 329
INTRODUCTION 329
201.THE QUANTUM HYPOTHESIS 330
202.THE STATISTICAL INTERPRETATION OF WAVE THEORY 332
203.THE UNCERTAINTY PRINCIPLE FOR OPTICS 333
204.WAVE MECHANICS 335
205.FREQUENCY AND WAVE LENGTH IN WAVE MECHANICS 337
206.WAVE PACKETS AND THE UNCERTAINTY PRINCIPLE 337
207.FERMAT'S PRINCIPLE 339
208.THE MOTION OF PARTICLES AND THE PRINCIPLE OF LEAST ACTION 342
PROBLEMS 343
CHAPTER ⅩⅩⅨ SCHR?DINGER'S EQUATION IN ONE DIMENSION 345
INTRODUCTION 345
209.SCHR?DINGER'S EQUATION 345
210.ONE-DIMENSIONAL MOTION IN WAVE MECHANICS 346
211.BOUNDARY CONDITIONS IN ONE-DIMENSIONAL MOTION 350
212.THE PENETRATION OF BARRIERS 351
213.MOTION IN A FINITE REGION,AND THE QUANTUM CONDITION 353
214.MOTION IN TWO OR MORE FINITE REGIONS 355
PROBLEMS 356
CHAPTER ⅩⅩⅩ THE CORRESPONDENCE PRINCIPLE AND STATISTICAL MECHANICS 358
INTRODUCTION 358
215.THE QUANTUM CONDITION IN THE PHASE SPACE 358
216.ANGLE VARIABLES AND THE CORRESPONDENCE PRINCIPLE 359
217.THE QUANTUM CONDITION FOR SEVERAL DEGREES OF FREEDOM 361
218.CLASSICAL STATISTICAL MECHANICS IN THE PHASE SPACE 364
219.LIOUVILLE'S THEOREM 365
220.DISTRIBUTIONS INDEPENDENT OF TIME 366
221.THE MICROCANONICAL ENSEMBLE 367
222.THE CANONICAL ENSEMBLE 368
223.THE QUANTUM THEORY AND THE PHASE SPACE 369
PROBLEMS 371
CHAPTER ⅩⅩⅪ MATRICES 374
INTRODUCTION 374
224.MEAN VALUE OF A FUNCTION OF COORDINATES 374
225.PHYSICAL MEANING OF MATRIX COMPONENTS 375
226.INITIAL CONDITIONS,AND DETERMINATION OF c'S 377
227.MEAN VALUES OF FUNCTIONS OF MOMENTA 379
228.SCHR?DINGER'S EQUATION INCLUDING THE TIME 381
229.SOME THEOREMS REGARDING MATRICES 382
PROBLEMS 384
CHAPTER ⅩⅩⅫ PERTURBATION THEORY 386
INTRODUCTION 386
230.THE SECULAR EQUATION OF PERTURBATION THEORY 386
231.THE POWER SERIES SOLUTION 387
232.PERTURBATION THEORY FOR DEGENERATE SYSTEMS 390
233.THE METHOD OF VARIATION OF CONSTANTS 391
234.EXTERNAL RADIATION FIELD 392
235.EINSTEIN'S PROBABILITY COEFFICIENTS 393
236.METHOD OF DERIVING THE PROBABILITY COEFFICIENTS 395
237.APPLICATION OF PERTURBATION THEORY 396
238.SPONTANEOUS RADIATION AND COUPLED SYSTEMS 399
239.APPLICATIONS OF COUPLED SYSTEMS TO RADIOACTIVITY AND ELECTRONIC COLLISIONS 402
PROBLEMS 404
CHAPTER ⅩⅩⅩⅢ THE HYDROGEN ATOM AND THE CENTRAL FIELD 406
INTRODUCTION 406
240.THE ATOM AND ITS NUCLEUS 406
241.THE STRUCTURE OF HYDROGEN 407
242.DISCUSSION OF THE FUNCTION OF r FOR HYDROGEN 410
243.THE ANGULAR MOMENTUM 414
244.SERIES AND SELECTION PRINCIPLES 416
245.THE GENERAL CENTRAL FIELD 418
PROBLEMS 423
CHAPTER ⅩⅩⅩⅣ ATOMIC STRUCTURE 425
INTRODUCTION 425
246.THE PERIODIC TABLE 426
247.THE METHOD OF SELF-CONSISTENT FIELDS 430
248.EFFECTIVE NUCLEAR CHARGES 431
249.THE MANY-BODY PROBLEN IN WAYE MECHANICS 432
250.SCHR?DINGER'S EQUATION AND EFFECTIVE NUCLEAR CHARGES 433
251.IONIZATION POTENTIALS AND ONE-ELECTRON ENERGIES 435
PROBLEMS 437
CHAPTER ⅩⅩⅩⅤ INTERATOMIC FORCES AND MOLECULAR STRUCTURE 439
INTRODUCTION 439
252.IONIC FORCES 439
253.POLARIZATION FORCE 439
254.VAN DER WAALS'FORCE 440
255.PENETRATION OR COULOMB FORCE 442
256.VALENCE ATTRACTION 442
257.ATOMIC REPULSIONS 444
258.ANALYTICAL FORMULAS FOR VALENCE AND REPULSIVE FORCES 444
259.TYPES OF SUBSTANCES:VALENCE COMPOUNDS 447
260.METALS 449
261.IONIC COMPOUNDS 449
PROBLEMS 451
CHAPTER ⅩⅩⅩⅥ EQUATION OF STATE OF GASES 454
INTRODUCTION 454
262.GASES,LIQUIDS,AND SOLIDS 454
263.THE CANONICAL ENSEMBLE 456
264.THE FREE ENERGY 458
265.PROPERTIES OF PERFECT GASES ON CLASSICAL THEORY 461
266.PROPERTIES OF IMPERFECT GASES ON CLASSICAL THEORY 462
267.VAN DER WAALS'EQUATION 464
268.QUANTUM STATISTICS 466
269.QUANTUM THEORY OF THE PERFECT GAS 468
PROBLEMS 470
CHAPTER ⅩⅩⅩⅦ NUCLEAR VIBRATIONS IN MOLECULES AND SOLIDS 471
INTRODUCTION 471
270.THE CRYSTAL AT ABSOLUTE ZERO 472
271.TEMPERATURE VIBRATIONS OF A CRYSTAL 474
272.EQUATION OF STATE OF SOLIDS 478
273.VIBRATIONS OF MOLECULES 480
274.DIATOMIC MOLECULES 481
275.SPECIFIC HEAT OF DIATOMIC MOLECULES 483
276.POLYATOMIC MOLECULES 485
PROBLEMS 486
CHAPTER ⅩⅩⅩⅧ COLLISIONS AND CHEMICAL REACTIONS 488
INTRODUCTION 488
277.CHEMICAL REACTIONS 488
278.COLLISIONS WITH ELECTRONIC EXCITATION 491
279.ELECTRONIC AND NUCLEAR ENERGY IN METALS 494
280.PERTURBATION METHOD FOR INTERACTION OF NUCLEI 497
PROBLEMS 499
CHAPTER ⅩⅩⅩⅨ ELECTRONIC INTERACTIONS 501
INTRODUCTION 501
281.THE EXCLUSION PRINCIPLE 502
282.RESULTS OF ANTISYMMETRY OF WAVE FUNCTIONS 506
283.THE ELECTRON SPIN 507
284.ELECTRON SPINS AND MULTIPLICITY OF LEVELS 509
285.MULTIPLICITY AND THE EXCLUSION PRINCIPLE 510
286.SPIN DEGENERACY FOR TWO ELECTRONS 512
287.EFFECT OF EXCLUSION PRINCIPLE AND SPIN 514
PROBLEMS 516
CHAPTER ⅩL ELECTRONIC ENERGY OF ATOMS AND MOLECULES 518
INTRODUCTION 518
288.ATOMIC ENERGY LEVELS 518
289.SPIN AND ORBITAL DEGENERACY IN ATOMIC MULTIPLETS 520
290.ENERGY LEVELS OF DIATOMIC MOLECULES 522
291.HEITLER AND LONDON METHOD FOR H2 523
292.THE METHOD OF MOLECULAR ORBITALS 527
PROBLEMS 530
CHAPTER ⅩLⅠ FERMI STATISTICS AND METALLIC STRUCTURE 531
INTRODUCTION 531
293.THE EXCLUSION PRINCIPLE FOR FREE ELECTRONS 531
294.MAXIMUM KINETIC ENERGY AND DENSITY OF ELECTRONS 534
295.THE FERMI-THOMAS ATOMIC MODEL 535
296.ELECTRONS IN METALS 536
297.THE FERMI DISTRIBUTION 540
PROBLEMS 543
CHAPTER ⅩLⅡ DISPERSION,DIELECTRICS,AND MAGNETISM 545
INTRODUCTION 545
298.DISPERSION AND DISPERSION ELECTRONS 546
299.QUANTUM THEORY OF DISPERSION 548
300.POLARIZABILITY 549
301.VAN DER WAALS'FORCE 551
302.TYPES OF DIELECTRICS 553
303.THEORY OF DIPOLE ORIENTATION 554
304.MAGNETIC SUBSTANCES 555
PROBLEMS 558
SUGGESTED REFERENCES 561
INDEX 565
- 《数据失控》(美)约翰·切尼-利波尔德(John Cheney-Lippold)著 2019
- 《深奥的简洁》(英)约翰·格里宾(John Gribbin)著 2020
- 《铸造手册大全 金属铸造工艺、冶金技术和设计 第6册 熔炼·造型·铸造·凝固》John Campbell主编 2018
- 《论自由》(英)约翰·穆勒(John Stuart Mill)著 2019
- 《DETECTION AND SPECTROMETRY OF FAINT LIGHT》JOHN MEABURN
- 《大众传播媒介 (第十1版)=THE MEDIA OF MASS COMMUNICATION (ELEVENTH EDITION)》(美)约翰·维维安(John Vivian)著 2020
- 《天路历程 21世纪最新中文译注插图珍藏版》(英)约翰·班扬(John Bunyan)著 2002
- 《群众 国难后第1版》高尔斯华绥(John Galsworthy)著 1930
- 《解读警察文化》(美)约翰·P.克兰克(John P. Crank)著 2017
- 《ATLAS ECLIPTICALIS CONDUCTOR SCORE SEE DIRECTIONS FOR》JOHN CAGE 1961
- 《I SPY视觉大发现 怪物加工场》维克,玛佐洛,代冬梅 2007
- 《PIANO ADVENTURES THE BASIC PIANO METHOD LEVEL 3B LESSON BOOK 2ND EDITION》NANCY AND RANDALL FABER 2015
- 《Variations I : extra materials》John Cage; C.F. Peters (Firm); Henmar Press (Firm); Edition Peters. 1960
- 《Basic writings of Saint Thomas Aquinas I = 圣托马斯基本著作》Thomas Aquinas; Fang Buke 2019
- 《纽约2140 BOOK.2》(美)金·斯坦利·罗宾逊著;王梓涵译 2018
- 《Card board book dozens of the best cardboard ideas from around the world!》Narelle Yabuka 2010
- 《这本书 Book 01》黄俊郎文画 2004
- 《嵌入式Linux C语言程序设计基础教程》华清远见嵌入式学院,冯利美,冯建主编 2013
- 《猫胆包天》(英)格里菲斯著;冯瑜,糜歆歆译 2010
- 《酒吧与餐厅设计 2 英文》深圳市艺力文化发展有限公司编 2012