当前位置:首页 > 外文
INTRODUCTION TO THEORETICAL PHYSICS
INTRODUCTION TO THEORETICAL PHYSICS

INTRODUCTION TO THEORETICAL PHYSICSPDF电子书下载

外文

  • 电子书积分:17 积分如何计算积分?
  • 作 者:JOHN C.SLATER PH.D.
  • 出 版 社:MCGRAW-HILL BOOK COMPANY INC
  • 出版年份:2222
  • ISBN:
  • 页数:576 页
图书介绍:
《INTRODUCTION TO THEORETICAL PHYSICS》目录
标签:

CHAPTER Ⅰ POWER SERIES 1

INTRODUCTION 1

1.POWER SERIES 2

2.SMALL QUANTITIES OF VARIOUS ORDERS 3

3.TAYLOR'S EXPANSION 4

4.THE BINOMIAL THEOREM 4

5.EXPANSION ABOUT AN ARBITRARY POINT 4

6.EXFANSION ABOUT A POLE 5

7.CONVERGENCE 5

PROBLEMS 8

CHAPTER Ⅱ POWER SERIES METHOD FOR DIFFERENTIAL EQUATICNS 10

INTRODUCTION 10

8.THE FALLING BODY 11

9.FALLING BODY WITH VISCOSITY 11

10.PARTICULAR AND GENERAL SOLUTIONS FOR FALLING BODY WITH VISCOSITY 14

11.ELECTRIC CIRCUIT CONTAINING RESISTANCE AND INDUCTANCE 16

PROBLEMS 17

CHAPTER Ⅲ POWER SERIES AND EXPONENTIAL METHODS FOR SIMPLE HARMONIC VIBRATIONS 19

INTRODUCTION 19

12.PARTICLE WITH LINEAR RESTORING FORCE 19

13.OSCILLATING ELECTRIC CIRCUIT 20

14.THE EXPONENTIAL METHOD OF SOLUTION 21

15.COMPLEX EXPONENTIALS 22

16.COMPLEX NUMBERS 23

17.APPLICATION OF COMPLEX NUMBERS TO VIBRATION PROBLEMS 25

PROBLEMS 26

CHAPTER Ⅳ DAMPED VIBRATIONS,FORCED VIBRATIONS,AND RESONANCE 27

INTRODUCTION 27

18.DAMPED VIBRATIONAL MOTION 27

19.DAMPED ELECTRICAL OSCILLATIONS 28

20.INITIAL CONDITIONS FOR TRANSIENTS 29

21.FORCED VIBRATIONS AND RESONANCE 29

22.MECHANICAL RESONANCE 30

23.ELECTRICAL RESONANCE 31

24.SUPERPOSITION OF TRANSIENT AND FORCED MOTION 33

25.MOTION UNDER GENERAL EXTERNAL FORCES 35

26.GENERALIZATIONS REGARDING LINEAR DIFFERENTIAL EQUATIONS 36

PROBLEMS 37

CHAPTER Ⅴ ENERGY 39

INTRODUCTION 39

27.MECHANICAL ENERGY 40

28.USE OF THE POTENTIAL FOR DISCUSSING THE MOTION OF A SYSTEM 42

29.THE ROLLING-BALL ANALOGY 45

30.MOTION IN SEVERAL DIMENSIONS 46

PROBLEMS 46

CHAPTER Ⅵ VECTOR FORCES AND POTENTIALS 48

INTRODUCTION 48

31.VECTORS AND THEIR COMPONENTS 48

32.SCALAR PRODUCT OF TWO VECTORS 49

33.VECTOR PRODUCT OF TWO VECTORS 50

34.VECTOR FIELDS 51

35.THE ENERGY THEOREM IN THREE DIMENSIONS 52

36.LINE INTEGRALS AND POTENTIAL ENERGY 52

37.FORCE AS GRADIENT OF POTENTIAL 53

38.EQUIPOTENTIAL SURFACES 54

39.THE CURL AND THE CONDITION FOR A CONSERVATIVE SYSTEM 55

40.THE SYMBOLIC VECTOR ▽ 55

PROBLEMS 56

CHapter Ⅶ LAGRANGE'S EQUATIONS AND PLANETARY MOTION 58

INTRODUCTION 58

41.LAGRANGE'S EQUATIONS 58

42.PLANETARY MOTION 60

43.ENERGY METHOD FOR RADIAL MOTION IN CENTRAL FIELD 61

44.ORBITS IN CENTRAL MOTION 62

45.JUSTIFICATION OF LAGRANGE'S METHOD 64

PROBLEMS 67

CHAPTER Ⅷ GENERALIZED MOMENTA AND HAMILTON'S EQUATIONS 69

INTRODUCTION 69

46.GENERALIZED FORCES 69

47.GENERALIZED MOMENTA 70

48.HAMILTON'S EQUATIONS OF MOTION 71

49.GENERAL PROOF OF HAMILTON'S EQUATIONS 72

50.EXAMPLE OF HAMILTON'S EQUATIONS 74

51.APPLICATIONS OF LAGRANGE'S AND HAMILTON'S EQUATIONS 75

PROBLEMS 76

CHAPTER Ⅸ PHASE SPACE AND THE GENERAL MOTION OF PARTICLES 79

INTRODUCTION 79

52.THE PHASE SPACE 80

53.PHASE SPACE FOR THE LINEAR OSCILLATOR 81

54.PHASE SPACE FOR CENTRAL MOTION 82

55.NONCENTRAL TWO-DIMENSIONAL MOTION 83

56.CONFIGURATION SPACE AND MOMENTUM SPACE 83

57.THE TWO-DIMENSIONAL OSCILLATOR 84

58.METHODS OF SOLUTION 86

59.CONTACT TRANSFORMATIONS AND ANGLE VAROABLES 87

60.METHODS OF SOLUTION FOR NONPERIODIC MOTIONS 90

PROBLEMS 90

CHAPTER Ⅹ THE MOTION OF RIGID BODIES 92

INTRODUCTION 92

61.ELEMENTARY THEORY OF PRECESSING TOP 92

62.ANGULAR MOMENTUM,MOMENT OF INERTIA,AND KINETIC ENERGY 94

63.THE ELLIPSOID OF INERTIA;PRINCIPAL AXES OF INERTIA 95

64.THE EQUATIONS OF MOTION 96

65.EULER'S EQUATIONS 98

66.TORQUE-FREE MOTION OF A SYMMETRIC RIGID BODY 98

67.EULER'S ANGLES 100

68.GENERAL MOTION OF A SYMMETRICAL TOP UNDER GRAVITY 102

69.PRECESSION AND NUTATION 104

PROBLEMS 105

CHAPTER Ⅺ COUPLED SYSTEMS AND NORMAL COORDINATES 107

INTRODUCTION 107

70.COUPLED OSCILLATORS 107

71.NORMAL COORDINATES 111

72.RELATION OF PROBLEM OF COUPLED SYSTEMS TO TWO-DIMEN-SIONAL OSCILLATOR 114

73.THE GENERAL PROBLEM OF THE MOTION OF SEVERAL PARTICLES 117

PROBLEMS 118

CHAPTER Ⅻ THE VIBRATING STRING,AND FOURIER SERIES 120

INTRODUCTION 120

74.DIFFERENTIAL EQUATION OF THE VIBRATING STRING 120

75.THE INITIAL CONDITIONS FOR THE STRING 122

76.FOURIER SERIES 123

77.COEFFICIENTS OF FOURIER SERIES 124

78.CONVERGENCE OF FOURIER SERIES 125

79.SINE AND COSINE SERIES,WITH APPLICATION TO THE STRING 126

80.THE STRING AS A LIMITING PROBLEM OF VIBRATION OF PARTICLES 128

81.LAGRANGE'S EQUATIONS FOR THE WEIGHTED STRING 131

82.CONTINUOUS STRING AS LIMITING CASE 131

PROBLEMS 132

CHAPTER ⅩⅢ NORMAL COORDINATES AND THE VIBRATING STRING 134

INTRODUCTION 134

83.NORMAL COORDINATES 134

84.NORMAL COORDINAES AND FUNCTION SPACE 137

85.FOURLER ANALYSIS IN FUNCTION SPACE 139

86.EQUATIONS OF MOTION IN NORMAL COORDINATES 140

87.THE VIBRATING STRING WITH FRICTION 142

PROBLEMS 144

CHAPTER ⅩⅣ THE STRING WITH VARIABLE TENSION AND DENSITY 146

INTRODUCTION 146

88.DIFFERENTIAL EQUATION FOR THE VARIABLE STRING 146

89.APPROXIMATE SOLUTION FOR SLOWLY CHANGING DENSITY AND TENSION 147

90.PROGRESSIVE WAVES AND STANDING WAVES 149

91.ORTHOGONALITY OF NORMAL FUNCTIONS 151

92.EXPANSION OF AN ARBITRARY FUNCTION USING NORMAL FUNC-TIONS 152

93.PERTURBATION THEORY 154

94.REFLECTION OF WAVES FROM A DISCONTINUITY 156

PROBLEMS 158

CHAPTER ⅩⅤ THE VIBRATING MEMBRANE 160

INTRODUCTION 160

95.BOUNDARY CONDITIONS ON THE RECTANGULAR MEMBRANE 160

96.THE NODES IN A VIBRATING MEMBRANE 162

97.INITIAL CONDITIONS 162

98.THE METHOD OF SEPARATION OF VARIABLES 163

99.THE CIRCULAR MEMBRANE 164

100.THE LAPLACIAN IN POLAR COORDINATES 164

101.SOLUTION OF THE DIFFERENTIAL EQUATION BY SEPARATION 165

102.BOUNDARY CONDITIONS 166

103.PHYSICAL NATURE OF THE SOLUTION 167

104.INITIAL CONDITION AT t=O 168

105.PROOF OF ORTHOGONALITY OF THE J'S 169

PROBLEMS 170

CHAPTER ⅩⅥ STRESSES,STRAINS,AND VIBRATIONS OF AN ELASTIC SOLID 172

INTRODUCTION 172

106.STRESSES,BODY AND SURFACE FORCES 172

107.EXAMPLES OF STRESSES 174

108.THE EQUATION OF MOTION 175

109.TRANSVERSE WAVES 176

110.LONGITUDINAL WAVES 178

111.GENERAL WAVE PROPAGATION 179

112.STRAINS AND HOOKE'S LAW 180

113.YOUNG'S MODULUS 182

PROBLEMS 183

CHAPTER ⅩⅦ FLOW OF FLUIDS 185

INTRODUCTION 185

114.VELOCITY,FLUX DENSITY,AND LINES OF FLOW 185

115.THE EQUATION OF CONTINUITY 186

116.GAUSS'S THEOREM 187

117.LINES OF FLOW TO MEASURE RATE OF FLOW 188

118.IRROTATIONAL FLOW AND THE VELOCITY POTENTIAL 188

119.EULER'S EQUATIONS OF MOTION FOR IDEAL FLUIDS 190

120.IRROTATIONAL FLOW AND BERNOULLI'S EQUATION 191

121.VISCOUS FLUIDS 192

122.POISEUILLE'S LAW 194

PROBLEMS 195

CHAPTER ⅩⅧ HEAT FLOW 197

INTRODUCTION 197

123.DIFFERENTIAL EQUATION OF HEAT FLOW 197

124.THE STEADY FLOW OF HEAT 198

125.FLOW VECTORS IN GENERALIZED COORDINATES 199

126.GRADIENT IN GENERALIZED COORDINATES 200

127.DIVERGENCE IN GENERALIZED COORDINATES 200

128.LAPLACIAN 201

129.STEADY FLOW OF HEAT IN A SPHERE 201

130.SPHERICAL HARMONICS 202

131.FOURIER'S METHOD FOR THE TRANSIENT FLOW OF HEAT 203

132.INTEGRAL METHOD FOR HEAT FLOW 205

PROBLEMS 209

CHAPTER ⅩⅨ ELECTROSTATICS,GREEN'S THEOREM,AND POTENTIAL THEORY 210

INTRODUCTION 210

133.THE DIVERGENCE OF THE FIELD 210

134.THE POTENTIAL 211

135.ELECTROSTATIC PROBLEMS WITHOUT CONDUCTORS 212

136.ELECTROSTATIC PROBLEMS WITH CONDUCTORS 215

137.GREEN'S THEOREM 217

138.PROOF OF SOLUTION OF POISSON'S EQUATION 217

139.SOLUTION OF POISSON'S EQUATION IN A FINITE REGION 220

140.GREEN'S DISTRIBUTION 221

141.GREEN'S METHOD OF SOLVING DIFFERENTIAL EQUATIONS 222

PROBLEMS 223

CHAPTER ⅩⅩ MAGNETIC FIELDS,STOKES'S THEOREM,AND VECTOR POTENTIAL 225

INTRODUCTION 225

142.THE MAGNETIC FIELD OF CURRENTS 226

143.FIELD OF A STRAIGHT WIRE 228

144.STOKES'S THEOREM 229

145.THE CURL IN CURVILINEAR COORDINATES 229

146.APPLICATIONS OF STOKES'S THEOREM 230

147.EXAMPLE:MAGNETIC FIELD IN A SOLENOID 231

148.THE VECTOR POTENTIAL 231

149.THE BIOT-SAVART LAW 233

PROBLEMS 234

CHAPTER ⅩⅪ ELECTROMAGNETIC INDUCTION AND MAXWELL'S EQUATIONS 235

INTRODUCTION 235

150.THE DIFFERENTIAL EQUATION FOR ELECTROMAGNETIC INDUCTION 235

151.THE DISPLACEMENT CURRENT 236

152.MAXWELL'S EQUATIONS 239

153.THE VECTOR AND SCALAR POTENTIALS 241

PROBLEMS 244

CHAPTER ⅩⅫ ENERGY IN THE ELECTROMAGNETIC FIELD 246

INTRODUCTION 246

154.ENERGY IN A CONDENSER 246

155.ENERGY IN THE ELECTRIC FIELD 247

156.ENERGY IN A SOLENOID 248

157.ENERGY DENSITY AND ENERGY FLOW 249

158.POYNTING'S THEOREM 250

159.THE NATURE OF AN E.M.F. 250

160.EXAMPLES OF POYNTING'S VECTOR 251

161.ENERGY IN A PLANE WAVE 253

162.PLANE WAVES IN METALS 255

PROBLEMS 256

CHAPTER ⅩⅩⅢ REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES 258

INTRODUCTION 258

163.BOUNDARY CONDITIONS AT A SURFCE OF DISCONTINUITY 258

164.THE LAWS OF REFLECTION AND REFRACTION 259

165.REFLECTION COEFFICIENT AT NORMAL INCIDENCE 260

166.FRESNEL'S EQUATIONS 262

167.THE POLARIZING ANGLE 264

168.TOTAL REFLECTION 265

169.THE OPTICAL BEHAVIOR OF METALS 267

PROBLEMS 268

CHAPTER ⅩⅩⅣ ELECTRON THEORY AND DISPERSION 270

INTRODUCTION 270

170.POLARIZATION AND DIELECTRIC CONSTANT 271

171.THE RELATIONS OF P,E,AND D 273

172.POLARIZABILITY AND DIELECTRIC CONSTANT OF GASES 275

173.DISPERSION IN GASES 275

174.DISPERSION OF SOLIDS AND LIQUIDS 278

175.DISPERSION OF METALS 280

PROBLEMS 283

CHAPTER ⅩⅩⅤ SPHERICAL ELECTROMAGNETIC WAVES 286

INTRODUCTION 286

176.SPHERICAL SOLUTIONS OF THE WAVE EQUATION 286

177.SCALAR POTENTIAL FOR OSCILLATING DIPOLE 288

178.VECTOR POTENTIAL 289

179.THE FIELDS 290

180.THE HERTZ VECTOR 291

181.INTENSITY OF RADIATION FROM A DIPOLE 293

182.SCATTERING OF LIGHT 293

183.POLARIZATION OF SCATTERED LIGHT 295

184.COHERENCE AND INCOHERENCE OF LIGHT 295

185.COHERENCE AND THE SPECTRUM 298

186.COHERENCE OF DIFFERENT SOURCES 299

PROBLEMS 299

CHAPTER ⅩⅩⅥ HUYGENS'PRINCIPLE AND GREEN'S THEOREM 302

INTRODUCTION 302

187.THE RETARDED POTENTIALS 303

188.MATHEMATICAL FORMULATION OF HUYGENS'PRINCIPLE 305

189.APPLICATION TO OPTICS 307

190.INTEGRATION FOR A SPHERICAL SURFACE BY FRESNEL'S ZONES 308

191.THE USE OF HUYGENS'PRINCIPLE 310

192.HUYGENS'PRINCIPLE FOR DIFFRACTION PROBLEMS 310

193.QUALITATIVE DISCUSSION OF DIFFRACTION,USING FRESNEL'S ZONES 311

PROBLEMS 314

CHAPTER ⅩⅩⅦ FRESNEL AND FRAUNHOFER DIFFRACTION 315

INTRODUCTION 315

194.COMPARISON OF FRESNEL AND FRAUNHOFER DIFFRACTION 315

195.FRESNEL DIFFRACTION FROM A SLIT 319

196.CORNU'S SPIRAL 320

197.FRAUNHOFER DIFFRACTION FROM RECTANGULAR SLIT 323

198.THE CIRCULAR APERTURE 324

199.RESOLVING POWER OF A LENS 325

200.DIFFRACTION FROM SEVERAL SLITS;THE DIFFRACTION GRATING 326

PROBLEMS 328

CHAPTER ⅩⅩⅧ WAVES,RAYS,AND WAVE MECHANICS 329

INTRODUCTION 329

201.THE QUANTUM HYPOTHESIS 330

202.THE STATISTICAL INTERPRETATION OF WAVE THEORY 332

203.THE UNCERTAINTY PRINCIPLE FOR OPTICS 333

204.WAVE MECHANICS 335

205.FREQUENCY AND WAVE LENGTH IN WAVE MECHANICS 337

206.WAVE PACKETS AND THE UNCERTAINTY PRINCIPLE 337

207.FERMAT'S PRINCIPLE 339

208.THE MOTION OF PARTICLES AND THE PRINCIPLE OF LEAST ACTION 342

PROBLEMS 343

CHAPTER ⅩⅩⅨ SCHR?DINGER'S EQUATION IN ONE DIMENSION 345

INTRODUCTION 345

209.SCHR?DINGER'S EQUATION 345

210.ONE-DIMENSIONAL MOTION IN WAVE MECHANICS 346

211.BOUNDARY CONDITIONS IN ONE-DIMENSIONAL MOTION 350

212.THE PENETRATION OF BARRIERS 351

213.MOTION IN A FINITE REGION,AND THE QUANTUM CONDITION 353

214.MOTION IN TWO OR MORE FINITE REGIONS 355

PROBLEMS 356

CHAPTER ⅩⅩⅩ THE CORRESPONDENCE PRINCIPLE AND STATISTICAL MECHANICS 358

INTRODUCTION 358

215.THE QUANTUM CONDITION IN THE PHASE SPACE 358

216.ANGLE VARIABLES AND THE CORRESPONDENCE PRINCIPLE 359

217.THE QUANTUM CONDITION FOR SEVERAL DEGREES OF FREEDOM 361

218.CLASSICAL STATISTICAL MECHANICS IN THE PHASE SPACE 364

219.LIOUVILLE'S THEOREM 365

220.DISTRIBUTIONS INDEPENDENT OF TIME 366

221.THE MICROCANONICAL ENSEMBLE 367

222.THE CANONICAL ENSEMBLE 368

223.THE QUANTUM THEORY AND THE PHASE SPACE 369

PROBLEMS 371

CHAPTER ⅩⅩⅪ MATRICES 374

INTRODUCTION 374

224.MEAN VALUE OF A FUNCTION OF COORDINATES 374

225.PHYSICAL MEANING OF MATRIX COMPONENTS 375

226.INITIAL CONDITIONS,AND DETERMINATION OF c'S 377

227.MEAN VALUES OF FUNCTIONS OF MOMENTA 379

228.SCHR?DINGER'S EQUATION INCLUDING THE TIME 381

229.SOME THEOREMS REGARDING MATRICES 382

PROBLEMS 384

CHAPTER ⅩⅩⅫ PERTURBATION THEORY 386

INTRODUCTION 386

230.THE SECULAR EQUATION OF PERTURBATION THEORY 386

231.THE POWER SERIES SOLUTION 387

232.PERTURBATION THEORY FOR DEGENERATE SYSTEMS 390

233.THE METHOD OF VARIATION OF CONSTANTS 391

234.EXTERNAL RADIATION FIELD 392

235.EINSTEIN'S PROBABILITY COEFFICIENTS 393

236.METHOD OF DERIVING THE PROBABILITY COEFFICIENTS 395

237.APPLICATION OF PERTURBATION THEORY 396

238.SPONTANEOUS RADIATION AND COUPLED SYSTEMS 399

239.APPLICATIONS OF COUPLED SYSTEMS TO RADIOACTIVITY AND ELECTRONIC COLLISIONS 402

PROBLEMS 404

CHAPTER ⅩⅩⅩⅢ THE HYDROGEN ATOM AND THE CENTRAL FIELD 406

INTRODUCTION 406

240.THE ATOM AND ITS NUCLEUS 406

241.THE STRUCTURE OF HYDROGEN 407

242.DISCUSSION OF THE FUNCTION OF r FOR HYDROGEN 410

243.THE ANGULAR MOMENTUM 414

244.SERIES AND SELECTION PRINCIPLES 416

245.THE GENERAL CENTRAL FIELD 418

PROBLEMS 423

CHAPTER ⅩⅩⅩⅣ ATOMIC STRUCTURE 425

INTRODUCTION 425

246.THE PERIODIC TABLE 426

247.THE METHOD OF SELF-CONSISTENT FIELDS 430

248.EFFECTIVE NUCLEAR CHARGES 431

249.THE MANY-BODY PROBLEN IN WAYE MECHANICS 432

250.SCHR?DINGER'S EQUATION AND EFFECTIVE NUCLEAR CHARGES 433

251.IONIZATION POTENTIALS AND ONE-ELECTRON ENERGIES 435

PROBLEMS 437

CHAPTER ⅩⅩⅩⅤ INTERATOMIC FORCES AND MOLECULAR STRUCTURE 439

INTRODUCTION 439

252.IONIC FORCES 439

253.POLARIZATION FORCE 439

254.VAN DER WAALS'FORCE 440

255.PENETRATION OR COULOMB FORCE 442

256.VALENCE ATTRACTION 442

257.ATOMIC REPULSIONS 444

258.ANALYTICAL FORMULAS FOR VALENCE AND REPULSIVE FORCES 444

259.TYPES OF SUBSTANCES:VALENCE COMPOUNDS 447

260.METALS 449

261.IONIC COMPOUNDS 449

PROBLEMS 451

CHAPTER ⅩⅩⅩⅥ EQUATION OF STATE OF GASES 454

INTRODUCTION 454

262.GASES,LIQUIDS,AND SOLIDS 454

263.THE CANONICAL ENSEMBLE 456

264.THE FREE ENERGY 458

265.PROPERTIES OF PERFECT GASES ON CLASSICAL THEORY 461

266.PROPERTIES OF IMPERFECT GASES ON CLASSICAL THEORY 462

267.VAN DER WAALS'EQUATION 464

268.QUANTUM STATISTICS 466

269.QUANTUM THEORY OF THE PERFECT GAS 468

PROBLEMS 470

CHAPTER ⅩⅩⅩⅦ NUCLEAR VIBRATIONS IN MOLECULES AND SOLIDS 471

INTRODUCTION 471

270.THE CRYSTAL AT ABSOLUTE ZERO 472

271.TEMPERATURE VIBRATIONS OF A CRYSTAL 474

272.EQUATION OF STATE OF SOLIDS 478

273.VIBRATIONS OF MOLECULES 480

274.DIATOMIC MOLECULES 481

275.SPECIFIC HEAT OF DIATOMIC MOLECULES 483

276.POLYATOMIC MOLECULES 485

PROBLEMS 486

CHAPTER ⅩⅩⅩⅧ COLLISIONS AND CHEMICAL REACTIONS 488

INTRODUCTION 488

277.CHEMICAL REACTIONS 488

278.COLLISIONS WITH ELECTRONIC EXCITATION 491

279.ELECTRONIC AND NUCLEAR ENERGY IN METALS 494

280.PERTURBATION METHOD FOR INTERACTION OF NUCLEI 497

PROBLEMS 499

CHAPTER ⅩⅩⅩⅨ ELECTRONIC INTERACTIONS 501

INTRODUCTION 501

281.THE EXCLUSION PRINCIPLE 502

282.RESULTS OF ANTISYMMETRY OF WAVE FUNCTIONS 506

283.THE ELECTRON SPIN 507

284.ELECTRON SPINS AND MULTIPLICITY OF LEVELS 509

285.MULTIPLICITY AND THE EXCLUSION PRINCIPLE 510

286.SPIN DEGENERACY FOR TWO ELECTRONS 512

287.EFFECT OF EXCLUSION PRINCIPLE AND SPIN 514

PROBLEMS 516

CHAPTER ⅩL ELECTRONIC ENERGY OF ATOMS AND MOLECULES 518

INTRODUCTION 518

288.ATOMIC ENERGY LEVELS 518

289.SPIN AND ORBITAL DEGENERACY IN ATOMIC MULTIPLETS 520

290.ENERGY LEVELS OF DIATOMIC MOLECULES 522

291.HEITLER AND LONDON METHOD FOR H2 523

292.THE METHOD OF MOLECULAR ORBITALS 527

PROBLEMS 530

CHAPTER ⅩLⅠ FERMI STATISTICS AND METALLIC STRUCTURE 531

INTRODUCTION 531

293.THE EXCLUSION PRINCIPLE FOR FREE ELECTRONS 531

294.MAXIMUM KINETIC ENERGY AND DENSITY OF ELECTRONS 534

295.THE FERMI-THOMAS ATOMIC MODEL 535

296.ELECTRONS IN METALS 536

297.THE FERMI DISTRIBUTION 540

PROBLEMS 543

CHAPTER ⅩLⅡ DISPERSION,DIELECTRICS,AND MAGNETISM 545

INTRODUCTION 545

298.DISPERSION AND DISPERSION ELECTRONS 546

299.QUANTUM THEORY OF DISPERSION 548

300.POLARIZABILITY 549

301.VAN DER WAALS'FORCE 551

302.TYPES OF DIELECTRICS 553

303.THEORY OF DIPOLE ORIENTATION 554

304.MAGNETIC SUBSTANCES 555

PROBLEMS 558

SUGGESTED REFERENCES 561

INDEX 565

返回顶部