ALGEBRA SECOND EDITIONPDF电子书下载
- 电子书积分:17 积分如何计算积分?
- 作 者:SAUNDERS MACLANE
- 出 版 社:INC. COLLIER MACMILLAN PUBLISHERS
- 出版年份:1979
- ISBN:
- 页数:586 页
Ⅰ Sets, Functions, and Integers 1
1. Sets 1
2. Functions 4
3. Relations and Binary Operations 10
4. The Natural Numbers 15
5. Addition and Multiplication 18
6. Inequalities 20
7. The Integers 23
8. The Integers Modulo n 28
9. Equivalence Relations and Quotient Sets 33
10. Morphisms 37
11. Semigroups and Monoids 39
Ⅱ Groups 43
1. Groups and Symmetry 43
2. Rules of Calculation 47
3. Cyclic Groups 51
4. Subgroups 56
5. Defining Relations 59
6. Symmetric and Alternating Groups 63
7. Transformation Groups 68
8. Cosets 72
9. Kernel and Image 75
10. Quotient Groups 79
Ⅲ Rings 85
1. Axioms for Rings 85
2. Constructions for Rings 90
3. Quotient Rings 95
4. Integral Domains and Fields 99
5. The Field of Quotients 101
6. Polynomials 104
7. Polynomials as Functions 109
8. The Division Algorithm 111
9. Principal Ideal Domains 115
10. Unique Factorization 116
11. Prime Fields 120
12. The Euclidean Algorithm 122
13. Commutative Quotient Rings 124
Ⅳ Universal Constructions 129
1. Examples of Universals 129
2. Functors 131
3. Universal Elements 134
4. Polynomials in Several Variables 137
5. Categories 141
6. Posets and Lattices 143
7. Contravariance and Duality 146
8. The Category of Sets 153
9. The Category of Finite Sets 156
Ⅴ Modules 160
1. Sample Modules 160
2. Linear Transformations 163
3. Submodules 167
4. Quotient Modules 171
5. Free Modules 173
6. Biproducts 178
7. Dual Modules 185
Ⅵ Vector Spaces 193
1. Bases and Coordinates 194
2. Dimension 199
3. Constructions for Bases 202
4. Dually Paired Vector Spaces 207
5. Elementary Operations 212
6. Systems of Linear Equations 219
Ⅶ Matrices 223
1. Matrices and Free Modules 224
2. Matrices and Biproducts 232
3. The Matrix of a Map 236
4. The Matrix of a Composite 240
5. Ranks of Matrices 244
6. Invertible Matrices 246
7. Change of Bases 251
8. Eigenvectors and Eigenvalues 257
Ⅷ Special Fields 261
1. Ordered Domains 261
2. The Ordered Field Q 265
3. Polynomial Equations 267
4. Convergence in Ordered Fields 269
5. The Real Field R 271
6. Polynomials over P 274
7. The Complex Plane 276
8. The Quaternions 281
9. Extended Formal Power Series 284
10. Valuations and p-adic Numbers 286
Ⅸ Determinants and Tensor Products 293
1. Multilinear and Alternating Functions 293
2. Determinants of Matrices 296
3. Cofactors and Cramer's Rule 301
4. Determinants of Maps 305
5. The Characteristic Polynomial 309
6. The Minimal Polynomial 312
7. Universal Bilinear Functions 318
8. Tensor Products 319
9. Exact Sequences 326
10. Identities on Tensor Products 329
11. Change of Rings 331
12. Algebr 334
Ⅹ Bilinear and Quadratic Forms 338
1. Bilinear Forms 338
2. Symmetric Matrices 341
3. Quadratic Forms 343
4. Real Quadratic Forms 347
5. Inner Products 351
6. Orthonormal Bases 355
7. Orthogonal Matrices 360
8. The Principal Axis Theorem 364
9. Unitary Spaces 369
10. Normal Matrices 374
Ⅺ Similar Matrices and Finite Abelian Groups 378
1. Noetherian Modules 378
2. Cyclic Modules 381
3. Torsion Modules 383
4. The Rational Canonical Form for Matrices 388
5. Primary Modules 392
6. Free Modules 397
7. Equivalence of Matrices 400
8. The Calculation of Invariant Factors 404
Ⅻ Structure of Groups 409
1. Isomorphism Theorems 409
2. Group Extensions 413
3. Characteristic Subgroups 417
4. Conjugate Classes 419
5. The Sylow Theorems 422
6. Nilpotent Groups 426
7. Solvable Groups 428
8. The Jordan-Holder Theorem 430
9. Simplicity of An 433
ⅩⅢ Galois Theory 436
1. Quadratic and Cubic Equations 436
2. Algebraic and Transcendental Elements 439
3. Degrees 442
4. Ruler and Compass 445
5. Splitting Fields 446
6. Galois Groups of Polynomials 450
7. Separable Polynomials 453
8. Finite Fields 456
9. Normal Extensions 458
10. The Fundamental Theorem 462
11. The Solution of Equations by Radicals 465
ⅩⅣ Lattices 470
1. Posets: Duality Principle 470
2. Lattice Identities 473
3. Sublattices and Products of Lattices 476
4. Modular Lattices 478
5. Jordan-Holder-Dedekind Theorem 480
6. Distributive Lattices 483
7. Rings of Sets 485
8. Boolean Algebras 487
9. Free Boolean Algebras 491
ⅩⅤ Categories and Adjoint Functors 495
1. Categories 495
2. Functors 501
3. Contravariant Functors 504
4. Natural Transformations 506
5. Representable Functors and Universal Elements 511
6. Adjoint Functors 517
ⅩⅥ Multilinear Algebra 522
1. Iterated Tensor Products 522
2. Spaces of Tensors 524
3. Graded Modules 530
4. Graded Algebras 533
5. The Graded Tensor Algebra 539
6. The Exterior Algebra of a Module 543
7. Determinants by Exterior Algebra 547
8. Subspaces by Exterior Algebra 552
9. Duality in Exterior Algebra 555
10. Alternating Forms and Skew-Symmetric Tensors 558
Bibliography 561
Index 565
- 《雇员关系 解析雇佣关系 understanding the employment relationship》(英)菲利普·李维斯(Philip Lewis),(英)阿德里安·桑希尔(Adrian Thornhill),(英)马克·桑得斯(Mark Saunders)著;高嘉勇等译 2005
- 《德语动词手册》(德)Joy Saunders编著 张艳敏译 2003
- 《安德鲁斯临床皮肤病学 中文翻译版》(美)R.B.奥多姆(W.B.Saunders)等主编;徐世正主译 2004
- 《迈向学习型组织的十个步骤 最新版》(美)彼得·柯莱恩(Peter Kline),(美)伯纳德·桑德斯(Bernard Saunders)著;任晶晶,袁东明译 2005
- 《戴明管理4日谈 风行欧美管理界20年的“戴明四日研讨会”课程精要》(美)威廉·拉扎克(William J.Latzko),(美)大卫·桑德斯(David M.Saunders)著;周静,董建宁译 2003
- 《走开,小不点儿!》(英)珍妮·威利斯(Jeanne Willis)文 ;(英)迈特·桑德斯(Matt Saunders)图 2017
- 《文化冷战与中央情报局》(英)弗朗西丝·斯托纳·桑德斯(Frances Stonor Saunders)著;曹大鹏译 2002
- 《NURSING CARE IN EYE》WILLIAM H.SAUNDERS WILLIAM H.HAVENER等 1979
- 《FOOT AND ANKLE ATHLETIC INJURIES CLINICS IN PODIATRIC MEDICINE AND SURGERY》SAUNDERS AN IMPRINT OF ELSEVIER 2011
- 《MATHEMATICS FOR THE TRADES:A GUIDE APPROACH FUORTH EDITION》ROBERT A.CARMAN AND HAL M.SAUNDERS 1996
- 《相贱有逆》杜子藤著 2012
- 《英国政治通论》(英)奈杰尔·福尔曼,(英)道格拉斯·鲍德温著;苏淑民译 2015
- 《认识日本》(美)DuncanMcCargo著 2015
- 《树立成功的形象》(美)罗伯特·舒克著;康敬贻,熊国慧译 1989
- 《MACMILLAN DIRECTORY OF MULTINATIONALS VOLUME 2》D.C.STAFFORD 1989
- 《THE MACMILLAN COLLEGE HANDBOOK》GERALD LEVIN 1986
- 《THE MACMILLAN DICTIONARY OF ITALIAN LITERATURE》 1979
- 《Chiens perdus sans collier》Barlow 1980
- 《THE MACMILLAN WRITER:RHETORIC》READER 1997
- 《MACMILLAN MODERN NOVELISTS MARK TWAIN》 1997