当前位置:首页 > 数理化
整权与半整权模形式  英文
整权与半整权模形式  英文

整权与半整权模形式 英文PDF电子书下载

数理化

  • 电子书积分:14 积分如何计算积分?
  • 作 者:Xueli Wang, Dingyi Pei
  • 出 版 社:北京:科学出版社
  • 出版年份:2012
  • ISBN:9787030330796
  • 页数:432 页
图书介绍:模形式理论是数论的一个十分重要的分支,它在数学和物理学的许多领域有十分重要的应用。本书将全面介绍整权和半整权单变量模形式的基本理论和现代研究成果:低权模形式(主要是低权Eisenstein级数)的构造,整权与半整权模形式之间的联系,模形式在二次型的算术研究中的某些应用。本书的主要特点是同时介绍和研究整权与半整权模形式的理论及其应用。书中既包含了模形式的基本理论,如:模群及其同余子群,Hecke算子等,也包含了许多现代的研究成果,如:整权和半整权模形式的Zeta函数,整权和半整权的Eisenstein级数,Cohen-Eisenstein级数,半整权模形式到整权模形式的Shimura提升,整权和半整权模形式空间上Hecke算子的迹公式,以及模形式理论在二次型的某些算术问题中的应用。
《整权与半整权模形式 英文》目录
标签:形式

Chapter 1 Theta Functions and Their Transformation Formulae 1

Chapter 2 Eisenstein Series 13

2.1 Eisenstein Series with Half Integral Weight 13

2.2 Eisenstein Series with Integral Weight 37

Chapter 3 The Modular Group and Its Subgroups 45

Chapter 4 Modular Forms with Integral Weight or Half-integral Weight 65

4.1 Dimension Formula for Modular Forms with Integral Weight 65

4.2 Dimension Formula for Modular Forms with Half-Integral Weight 81

References 88

Chapter 5 Operators on the Space of Modular Forms 89

5.1 Hecke Rings 89

5.2 A Representation of the Hecke Ring on the Space of Modular Forms 113

5.3 Zeta Functions of Modular Forms,Functional Equation,Weil Theorem 120

5.4 Hecke Operators on the Space of Modular Forms with Half-Integral Weight 134

References 152

Chapter 6 New Forms and Old Forms 153

6.1 New Forms with Integral Weight 153

6.2 New Forms with Half Integral Weight 178

6.3 Dimension Formulae for the Spaces of New Forms 200

Chapter 7 Construction of Eisenstein Series 205

7.1 Construction of Eisenstein Series with Weight≥5/2 205

7.2 Construction of Eisenstein Series with Weight 1/2 221

7.3 Construction of Eisenstein Series with Weight 3/2 232

7.4 Construction of Cohen-Eisenstein Series 246

7.5 Construction of Eisenstein Series with Integral Weight 255

References 263

Chapter 8 Weil Representation and Shimura Lifting 265

8.1 Weil Representation 265

8.2 Shimura Lifting for Cusp Forms 280

8.3 Shimura Lifting of Eisenstein Spaces 299

8.4 A Congruence Relation between Some Modular Forms 309

References 318

Chapter 9 Trace Formula 321

9.1 Eichler-Selberg Trace Formula on SL2(Z) 321

9.2 Eichler-Selberg Trace Formula on Fuchsian Groups 335

9.3 Trace Formula on the Space Sk+1/2(N,X) 348

References 362

Chapter 10 Integers Represented by Positive Definite Quadratic Forms 363

10.1 Theta Function of a Positive Definite Quadratic Form and Its Values at Cusp Points 363

10.2 The Minimal Integer Represented by a Positive Definite Quadratic Form 376

10.3 The Eligible Numbers of a Positive Definite Ternary Quadratic Form 390

References 428

Index 431

相关图书
作者其它书籍
返回顶部