光学原理 第7版PDF电子书下载
- 电子书积分:25 积分如何计算积分?
- 作 者:MAX BORN AND EMIL WOLF著
- 出 版 社:世界图书出版公司北京公司
- 出版年份:2001
- ISBN:7506250969
- 页数:952 页
Ⅰ Basic properties of the electromagnetic field 1
1.1 The electromagnetic field 1
1.1.1 Maxwell's equations 1
1.1.2 Material equations 2
1.1.3 Boundary conditions at a surface of discontinuity 4
1.1.4 The energy law of the electromagnetic field 7
1.2 The wave equation and the velocity of light 11
1.3 Scalar waves 14
1.3.1 Plane waves 15
1.3.2 Spherical waves 16
1.3.3 Harmonic waves.The phase velocity 16
1.3.4 Wave packets.The group velocity 19
1.4 Vector waves 24
1.4.1 The general electromagnetic plane wave 24
1.4.2 The harmonic electromagnetic plane wave 25
(a)Elliptic polarization 25
(b)Linear and circular polarization 29
(c)Characterization of the state of polarization by Stokes parameters 31
1.4.3 Harmonic vector waves of arbitrary form 33
1.5 Reflection and refraction of a plane wave 38
1.5.1 The laws of reflection and refraction 38
1.5.2 Fresnel formulae 40
1.5.3 The reflectivity and transmissivity;polarization on reflection and refraction 43
1.5.4 Total reflection 49
1.6 Wave propagation in a stratified medium.Theory of dielectric films 54
1.6.1 The basic difierential equations 55
1.6.2 The characteristic matrix of a stratified medium 58
(a)A homogeneous dielectric film 61
(b)A stratified medium as a pile of thin homogeneous films 62
1.6.3 The reflection and transmission coefficients 63
1.6.4 A homogeneous dielectric film 64
1.6.5 Periodicallv stratified media 70
Ⅱ Electromagnetic potentials and polarization 75
2.1 The electrodynamic potentials in the vacuum 76
2.1.1 The vector and scalar potentials 76
2.1.2 Retarded potentials 78
2.2 Polarization and magnetization 80
2.2.1 The potentials in terms of polarization and magnetization 80
2.2.2 Hertz vectors 84
2.2.3 The field of a linear electric dipole 85
2.3 The Lorentz-Lorenz formula and elementary dispersion theory 89
2.3.1 The dielectric and magnetic susceptibilities 89
2.3.2 The efiective field 90
2.3.3 The mean polarizability:the Lorentz-Lorenz formula 92
2.3.4 Elementary theory of dispersion 95
2.4 Propagation of electromagnetic waves treated by integral equations 103
2.4.1 The basic integral equation 104
2.4.2 The Ewald-Oseen extinction theorem and a rigorous derivation of the Lorentz-Lorenz formula 105
2.4.3 Refraction and reflection of a plane wave.treated with the help of the Ewald-Oseen extinction theorem 110
Ⅲ Foundations of geometrical optics 116
3.1 Approximation for very short wavelengths 116
3.1.1 Derivation of the eikonal equation 117
3.1.2 The light rays and the intensity law of geometrical optics 120
3.1.3 Propagation of the amplitude vectors 125
3.1.4 Generalizations and the limits of validity of geometrical optics 127
3.2 General properties of rays 129
3.2.1 The differential equation of light rays 129
3.2.2 The laws of refraction and reflection 132
3.2.3 Ray congruences and their focal properties 134
3.3 Other basic theorems of geometrical optics 135
3.3.1 Lagrange's integral invariant 135
3.3.2 The principle of Fermat 136
3.3.3 The theorem of Malus and Dupin and some related theorems 139
Ⅳ Geometrical theory of optical imaging 142
4.1 The characteristic functions of Hamilton 142
4.1.1 The point characteristic 142
4.1.2 The mixed characteristic 144
4.1.3 The angle characteristic 146
4.1.4 Approximate form of the angle characteristic of a refracting surface of revolution 147
4.1.5 Approximate form of the angle characteristic of a reflecting surface of revolution 151
4.2 Perfect imaging 152
4.2.1 General theorems 153
4.2.2 Maxwell's'fish-eye' 157
4.2.3 Stigmatic imaging of surfaces 159
4.3 Projective transformation(collineation)with axial symmetry 160
4.3.1 General formulae 161
4.3.2 The telescopic case 164
4.3.3 Classification of projective transformations 165
4.3.4 Combination of projective transformations 166
4.4 Gaussian optics 167
4.4.1 Refracting surface of revolution 167
4.4.2 Reflecting surface of revolution 170
4.4.3 The thick lens 171
4.4.4 The thin lens 174
4.4.5 The general centred system 175
4.5 Stigmatic imaging with wide-angle pencils 178
4.5.1 The sine condition 179
4.5.2 The Herschel condition 180
4.6 Astigmatic pencils of rays 181
4.6.1 Focal properties of a thin pencil 181
4.6.2 Refraction ofa thin pencil 182
4.7 Chromatic aberration.Dispersion by a prism 186
4.7.1 Chromatic aberration 186
4.7.2 Dispersion by a prism 190
4.8 Radiometry and apertures 193
4.8.1 Basic concepts of radiometry 194
4.8.2 Stops and pupils 199
4.8.3 Brightness and illumination of images 201
4.9 Ray tracing 204
4.9.1 Oblique meridional rays 204
4.9.2 Paraxial rays 207
4.9.3 Skew rays 208
4.10 Design of aspheric surfaces 211
4.10.1 Attainment of axial stigmatism 211
4.10.2 Attainmcnt of aplanatism 214
4.11 Image-reconstruction from projections(computerized tomography) 217
4.11.1 Introduction 217
4.11.2 Beam propagation in an absorbing medium 218
4.11.3 Ray integrals and projections 219
4.11.4 The N-dimensional Radon transform 221
4.11.5 Reconstruction of cross-sections and the Projection-slice theorem of computerized tomography 223
Ⅴ Geometrical theory of aberrations 228
5.1 Wave and ray aberrations;the aberration function 229
5.2 The perturbation eikonal of Schwarzschild 233
5.3 The primary(Seidel)aberrations 236
(a)Spherical aberration(B≠0) 238
(b)Coma(F≠0) 238
(c)Astigmatism(C≠0)and curvature of field(D≠0) 240
(d) Distortion(E≠0) 243
5.4 Addition theorem for the primary aberrations 244
5.5 The primary aberration coefficients of a general centred lens system 246
5.5.1 The Seidel formulae in terms of two paraxial rays 246
5.5.2 The Seidel formulae in terms of one paraxial ray 251
5.5.3 Petzval's theorem 253
5.6 Example:The primary aberrations of a thin lens 254
5.7 The chromatic aberration of a general centred lens system 257
Ⅵ Image-forming instruments 261
6.1 The eye 261
6.2 The camera 263
6.3 The refracting telescope 267
6.4 The reflecting telescope 274
6.5 Instruments of illumination 279
6.6 The microscope 281
Ⅶ Elements of the theory of interferenee and interferometers 286
7.1 Introduction 286
7.2 Interference of two monochromatic waves 287
7.3 Two-beam interference:division of wave-front 290
7.3.1 Young's experiment 290
7.3.2 Fresnel's mirrors and similar arrangements 292
7.3.3 Fringes with quasi-monochromatic and white light 295
7.3.4 Use of slit sources;visibility of fringes 296
7.3.5 Application to the measurement of optical path difference:the Rayleigh interferometer 299
7.3.6 Application to the measurement of angular dimensions of sources:the Michelson stellar interferometer 302
7.4 Standing waves 308
7.5 Two-beam interference:division of amplitude 313
7.5.1 Fringes with a plane-parallel plate 313
7.5.2 Fringes with thin films;the Fizeau interferometer 318
7.5.3 Localization of fringes 325
7.5.4 The Michelson interferometer 334
7.5.5 The Twyman-Green and related interferometers 336
7.5.6 Fringes with two identical plates:the Jamin interferometer and interference microscopes 341
7.5.7 The Mach-Zehnder interferometer;the Bates wave-front shearing inter-ferometer 348
7.5.8 The coherence length;the application of two-beam interference to the study of the fine structure of spectral lines 352
7.6 Multiple-beam interference 359
7.6.1 Multiple-beam fringes with a plane-parallel plate 360
7.6.2 The Fabry-Perot interferometer 366
7.6.3 The application of the Fabry-Perot interferometer to the study of the fine structure of spectral lines 370
7.6.4 The application of the Fabry-Perot interferometer to the comparison of wavelengths 377
7.6.5 The Lummer-Gehrcke interferometer 380
7.6.6 Interference filters 386
7.6.7 Multiple-beam fringes with thin films 391
7.6.8 Multiple-beam fringes with two plane-parallel plates 401
(a)Fringes with monochromatic and quasi-monochromatic light 401
(b)Fringes of superposition 405
7.7 The comparison of wavelengths with the standard metre 409
Ⅷ Elements of the theory of diffraction 412
8.1 Introduction 412
8.2 The Huygens-Fresnel principle 413
8.3 Kirchhoff's diffraction theory 417
8.3.1 The integral theorem of Kirchhoff 417
8.3.2 Kirchhoff's diffraction theory 421
8.3.3 Fraunhofer and Fresnel diffraction 425
8.4 Transition to a scalar theory 430
8.4.1 The image field due to a monochromatic oscillator 431
8.4.2 The totalimage field 434
8.5 Fraunhofer diffraction at apertures of various forms 436
8.5.1 The rectangular aperture and the slit 436
8.5.2 The circular aperture 439
8.5.3 Other forms of aperture 443
8.6 Fraunhofer diffraction in optical instruments 446
8.6.1 Diffraction gratings 446
(a)The principle of the diffraction grating 446
(b)Types of grating 453
(c)Grating spectrographs 458
8.6.2 Resolving power of image-forming systems 461
8.6.3 Image formation in the microscope 465
(a)Incoherent illumination 465
(b)Coherent illumination-Abbe's theory 467
(c)Coherent illumination-Zemike's phase contrast method of observation 472
8.7 Fresnel diffraction at a straight edge 476
8.7.1 The diffraction integral 476
8.7.2 Fresnel's integrals 478
8.7.3 Fresnel diffraction at a straight edge 481
8.8 The three-dimensional light distribution near focus 484
8.8.1 Evaluation of the diffraction integral in terms of Lommel functions 484
8.8.2 The distribution of intensity 489
(a)Intensity in the geometrical focal plane 490
(b)Intensity along the axis 491
(c)Intensity along the boundary of the geometrical shadow 491
8.8.3 The integrated intensity 492
8.8.4 The phase behaviour 494
8.9 The boundary diffraction wave 499
8.10 Gabor's method of imaging by reconstructed wave-fronts(holography) 504
8.10.1 Producing the positive hologram 504
8.10.2 The reconstruction 506
8.11 The Rayleigh-Sommerfeld diffraction integrals 512
8.11.1 The Rayleigh diffraction integrals 512
8.11.2 The Rayleigh-Sommerfeld diffraction integrals 514
Ⅸ The diffraction theory of aberrations 517
9.1 The diffraction integral in the presence of aberrations 518
9.1.1 The diffraction integral 518
9.1.2.The displacement theorem.Change of reference sphere 520
9.1.3.A relation between the intensity and the average deformation of wave-fronts 522
9.2 Expansion of the aberration function 523
9.2.1 The circle polynomials of Zemike 523
9.2.2 Expansion of the aberration function 525
9.3 Tolerance conditions for primary aberrations 527
9.4 The diffraction pattem associated with a single aberration 532
9.4.1 Primary spherical aberration 536
9.4.2 Primary coma 538
9.4.3 Primary astigmatism 539
9.5 Imaging of extended objects 543
9.5.1 Coherent illumination 543
9.5.2 Incoherent illumination 547
Ⅹ Interference and diffraction with partially coherent light 554
10.1 Introduction 554
10.2 A complex representation of real polychromatic fields 557
10.3 The correlation functions of light beams 562
10.3.1 Interference of two partially coherent beams.The mutual coherence function and the complex degree of coherence 562
10.3.2 Spectral representation of mutual coherence 566
10.4 Interference and diffraction with quasi-monochromatic light 569
10.4.1 Interference with quasi-monochromatic light.The mutual intensity 569
10.4.2 Calculation of mutual intensity and degree of coherence for light from an extended incoherent quasi-monochromatic source 572
(a)The van Cittert-Zernike theorem 572
(b)Hopkins'formula 577
10.4.3 An example 578
10.4.4 Propagation of mutual intensity 580
10.5 Interference with broad-band light and the spectral degree of coherence.Correlation-induced spectral changes 585
10.6 Some applications 590
10.6.1 The degree of coherence in the image of an extended incoherent quasi-monochromatic source 590
10.6.2 The influence of the condenser on resolution in a microscope 595
(a) Critical illumination 595
(b)K?hler's illumination 598
10.6.3 Imaging with partially coherent quasi-monochromatic illumination 599
(a)Transmission of mutual intensity through an optical system 599
(b)Images of transilluminated objects 602
10.7 Some theorems relating to mutual coherence 606
10.7.1 Calculation of mutual coherence for light from an incoherent source 606
10.7.2 Propagation of mutual coherence 609
10.8 Rigorous theory of partial coherence 610
10.8.1 Wave equations for mutual coherence 610
10.8.2 Rigorous formulation of the propagation law for mutual coherence 612
10.8.3 The coherence time and the effective spectral width 615
10.9 Polarization properties of quasi-monochromatic light 619
10.9.1 The coherency matrix of a quasi-monochromatic plane wave 619
(a)Completely unpolarized light(natural light) 624
(b)Complete polarized light 624
10.9.2 Some equivalent representations.The degree of polarization of a light wave 626
10.9.3 The Stokes parameters of a quasi-monochromatic plane wave 630
Ⅺ Rigorous difiraction theory 633
11.1 Introduction 633
11.2 Boundary conditions and surface currents 635
11.3 Diffraction by a plane screen:electromagnetic form of Babinet's principle 636
11.4 Two-dimensioual diffiaction by a plane screen 638
11.4.1 The scalar nature of two-dimensional electromagnetic fields 638
11.4.2 An angular spectrum of plane waves 639
11.4.3 Formulation in terms of dual integral equations 642
11.5 Two-dimensional diffraction of a plane wave by a half-plane 643
11.5.1 Solution of the dual integral equations for E-polarization 643
11.5.2 Expression of the solution in terms of Fresnel integrals 645
11.5.3 The uature of the solution 648
11.5.4 The solution for H-polarization 652
11.5.5 Some numerical calculations 653
11.5.6 Comparison with approximate theory and with experimental results 656
11.6 Three-dimensional diffraction of a plane wave by a half-plane 657
11.7 Diffraction of a field due to a localized source by a half-plane 659
11.7.1 A line-current parallel to the diffracting edge 659
11.7.2 A dipole 664
11.8 Other problems 667
11.8.1 Two parallel half-planes 667
11.8.2 An infinite stack of parallel,staggered half-planes 669
11.8.3 A striP 670
11.8.4 Further problems 671
11.9 Uniqueness of solution 672
Ⅻ Difiraction of light by ultrasonie waves 674
12.1 Qualitative description of the phenomenon and summary of theories based on Maxwell's difierential equations 674
12.1.1 Qualitative description of the phenomenon 674
12.1.2 Summary of theories based on Maxwell's equations 677
12.2 Diffraction of light by ultrasonic waves as treated by the integral equation method 680
12.2.1 Integral equation for E-polarization 682
12.2.2 The trial solution of the integral equation 682
12.2.3 Expressions for the amplitudes of the light waves in the diffracted and reflected spectra 686
12.2.4 Solution of the equations by a method of successive approximations 686
12.2.5 Expressions for the intensities of the first and second order lines for some special cases 689
12.2.6 Some qualitative results 691
12.2.7 The Raman-Nath approximation 693
ⅩⅢ Scattering from inhomogeneous media 695
13.1 Elements of the scalar theory of scattering 695
13.1.1 Derivation of the basic integral equation 695
13.1.2 The first-order Born approximation 699
13.1.3 Scattering from periodic potentials 703
13.1.4 Multiple scattering 708
13.2 Principles of diffraction tomography for reconstruction of the scattering potential 710
13.2.1 Angular spectrum representation of the scattered field 711
13.2.2 The basic theorem of diffraction tomography 713
13.3 The optical cross-section theorem 716
13.4 A reciprocity relation 724
13.5 The Rytov series 726
13.6 Scattering of electromagnetic waves 729
13.6.1 The integro-differential equations of electromagnetic scattering theory 729
13.6.2 The far field 730
13.6.3 The optical cross-section theorem for scattering o felectromagnetic waves 732
ⅩⅣ Optics of metals 735
14.1 Wave propagation in a conductor 735
14.2 Refraction and reflection at a metal surface 739
14.3 Elementary electron theory of the optical constants of metals 749
14.4 Wave propagation in a stratified conducting medium.Theory of metallic films 752
14.4.1 An absorbing film on a transparent substrate 752
14.4.2 A transparent film on an absorbing substrate 758
14.5 Diffraction by a conducting sphere;theory of Mie 759
14.5.1 Mathematical solution of the problem 760
(a)Representation of the field in terms of Debye's potentials 760
(b)Series expansions for the field components 765
(c)Summary of formulae relating to the associated Legendre func-tions and to the cylindrical functions 772
14.5.2 Some consequences of Mie's formulae 774
(a)The partial waves 774
(b) Limiting cases 775
(c)Intensity and polarization of the scattered light 780
14.5.3 Total scattering and extinction 784
(a) Some general considerations 784
(b)Computational results 785
ⅩⅤ Opries of crystals 790
15.1 The dielectric tensor of an anisotropic medium 790
15.2 The structure of a monochromatic plane wave in an anisotropic medium 792
15.2.1 The phase velocity and the ray velocity 792
15.2.2 Fresnel's formulae for the propagation of light in crystals 795
15.2.3 Geometrical constructions for determining the velocities of propagation and the directions of vibration 799
(a)The ellipsoid of wave normals 799
(b)The ray ellipsoid 802
(c)The normal surface and the ray surface 803
15.3 Optical properties of uniaxial and biaxial crystals 805
15.3.1 The optical classification of crystals 805
15.3.2 Light propagation in uniaxial crystals 806
15.3.3 Light propagation in biaxial crystals 808
15.3.4 Refraction in crystals 811
(a)Double refraction 811
(b)Conical refraction 813
15.4 Measurements in crystal optics 818
15.4.1 The Nicol prism 818
15.4.2 Compensators 820
(a)The quarter-wave plate 820
(b)Babinet's compensator 821
(c)Soleil's compensator 823
(d)Berek's compensator 823
15.4.3 Interference with crystal plates 823
15.4.4 Interference figures from uniaxial crystal plates 829
15.4.5 Interference figures from biaxial crystal plates 831
15.4.6 Location of optic axes and determination of the principal refractive indices of a crystalline medium 833
15.5 Stress birefringence and form birefringence 834
15.5.1 Stress birefringence 834
15.5.2 Form birefringence 837
15.6 Absorbing crystals 840
15.6.1 Light propagation in an absorbing anisotropic medium 840
15.6.2 Interference figures from absorbing crystal plates 846
(a)Uniaxial crystals 847
(b)Biaxial crystals 848
15.6.3 Dichroic polarizers 849
Appendices 853
Ⅰ The Calculus of variations 853
1 Euler's equations as necessary conditions for an extremurn 853
2 Hilbert's independence integral and the Hamilton-Jacobi equation 855
3 The field of extremals 856
4 Determination of all extremals from the solution of the Hamilton-Jacobi equation 858
5 Hamilton's canonical equations 860
6 The special case when the independent variable does not appear explicitly in the integrand 861
7 Discontinuities 862
8 Weierstrass'and Legendre's conditions(sufficiency conditions for an extremum) 864
9 Minimum of the variational integral when one end point is constrained to a surface 866
10 Jacobi's criterion for a minimum 867
11 Example Ⅰ:Optics 868
12 Example Ⅱ:Mechanics of material points 870
Ⅱ Light optics,electron optics and wave mechanics 873
1 The Hamiltoniananalogy in elementary form 873
2 The Hamiltonian analogy in variational form 876
3 Wave mechanics of free electrons 879
4 The application of optical principles to electron optics 881
Ⅲ Asymptotic approximations to integrals 883
1 The method of steepest descent 883
2 The method of stationary phase 888
3 Double integrals 890
Ⅳ The Dirac delta function 892
Ⅴ A mathematical lemma used in the rigorous derivation of the Lorentz-Lorenz formula(2.4.2) 898
Ⅵ Propagation of discontinuities in an electromagnetic field (3.1.1) 901
1 Relations connecting discontinuous changes in field vectors 901
2 The field on a moving discontinuity surface 903
Ⅶ The circle polynomials of Zernike(9.2.1) 905
1 Some general considerations 905
2 Explicit expressions for the radial polynomials R±m m 907
Ⅷ Proof of the inequality|μ12(v)|≤1 for the spectral degree of coherence(10.5) 911
Ⅸ Proof of a reciprocity inequality(10.8.3) 912
Ⅹ Evaluation of two integrals(12.2.2) 914
Ⅺ Energy conservation in scalar wavefields(13.3) 918
Ⅻ Proof of Jones'lemma(13.3) 921
Author index 925
Subject index 936
- 《第一性原理方法及应用》李青坤著 2019
- 《计算机组成原理解题参考 第7版》张基温 2017
- 《中学物理奥赛辅导:热学 光学 近代物理学》崔宏滨 2012
- 《高等院校保险学专业系列教材 保险学原理与实务》林佳依责任编辑;(中国)牟晓伟,李彤宇 2019
- 《刑法归责原理的规范化展开》陈璇著 2019
- 《教师教育系列教材 心理学原理与应用 第2版 视频版》郑红,倪嘉波,刘亨荣编;陈冬梅责编 2020
- 《单片机原理及应用》庄友谊 2020
- 《通信电子电路原理及仿真设计》叶建芳 2019
- 《计算机组成原理 第2版》任国林 2018
- 《化工原理课程设计》刘建周主编 2018
- 《末日之战:政府不想让你知道的事》麦克斯·布鲁克斯(Max Brooks)著;简政章译 2013
- 《童话的魅力》(瑞士)麦克斯·吕蒂(Max Luthi)著;张田英译 1995
- 《社会斗争通史 卷3 近代农民斗争与乌托邦社会主义》Max Beer著;叶启芳译 1947
- 《民族国家与经济政策》(德)马克斯·韦伯(Max Weber)著;甘阳等译 1997
- 《心脏的电治疗学 心脏起搏器技术概论》(德)M·沙达赫(Max Schaldach)著;曹永君译 1993
- 《从心开始》Max Davis著;张明玲译 2001
- 《光学原理 光的传播、干涉和衍射的电磁理论 下》(德)马科斯·玻恩(Max Born),(美)埃米尔·沃耳夫(Emil Wolf)著;杨葭荪译 2006
- 《韦伯作品集 8 宗教社会学》(德)马克斯·韦伯(Max Weber)著) 康乐,简惠美译 2005
- 《AO脊柱手册 第2卷 临床应用》(瑞士)Max Aebi,(美)Vincent Arlet,(英)John Webb著 2010
- 《你很特别系列 你所需要的 4-7岁 中英双语典藏版》(美)陆可铎(Max Lucado)著;(美)克劳巴(Douglas Klauba)绘;郭恩惠,丘慧文译 2017
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017