当前位置:首页 > 数理化
半导体光学  第3版
半导体光学  第3版

半导体光学 第3版PDF电子书下载

数理化

  • 电子书积分:22 积分如何计算积分?
  • 作 者:C.F.Klingshirn著
  • 出 版 社:北京:科学出版社
  • 出版年份:2007
  • ISBN:7030187857
  • 页数:809 页
图书介绍:本书全面清晰地论述了半导体光学的物理概念,并把复杂的现实现象和基本概念联系起来,是本领域的权威著作。第三版半导体光学是之前版本的增补版,概述了半导体光学从红外线经可见光到紫外线,包括线性和非线性光学性质,动力学,电磁学和高激发效应,应用,实验技术和群论等。本书涵盖了从物理到材料科学、光电子学等方面的内容。本版更新的章节增加了当前的热点课题腔电磁耦子,光子学结果简化维数结构和半导体布洛赫方程等。
上一篇:高等数学下一篇:世界上最帅的猪
《半导体光学 第3版》目录
标签:半导体 光学

1 Introduction 1

1.1 Aims and Concepts 1

1.2 Outline of the Book and a lot of References 2

1.3 Some Personal Thoughts 4

1.4 Problems 5

References to Chap.1 6

2 Maxwell's Equations,Photons and the Density of States 11

2.1 Maxwell's Equations 11

2.2 Electromagnetic Radiation in Vacuum 14

2.3 Electromagnetic Radiation in Matter;Linear Optics 17

2.4 Transverse.Longitudinal and Surface Waves 21

2.5 Photons and Some Aspects of Quantum Mechanics and of Dispersion Relations 22

2.6 Density of States and Occupation Probabilities 26

2.7 Problems 33

References to Chap.2 34

3 Interaction of Light with Matter 37

3.1 Macroscopic Aspects for Solids 37

3.1.1 Boundary Conditions 37

3.1.2 Laws of Reflection and Refraction 40

3.1.3 Noether's Theorem and Some Aspects of Conservation Laws 42

3.1.4 Reflection and Transmission at an Interface and Fresnel's Formulae 44

3.1.5 Extinction and Absorption of Light 48

3.1.6 Transmission Through a Slab of Matter and Fabry Perot Modes 49

3.1.7 Birefringence and Dichroism 53

3.1.8 Optical Activity 61

3.2 Microscopic Aspects 61

3.2.1 Absorption,Stimulated and Spontaneous Emission,Virtual Excitation 62

3.2.2 Perturbative Treatment of the Linear Interaction of Light with Matter 65

3.3 Problems 71

References to Chap.3 72

4 Ensemble of Uncoupled Oscillators 73

4.1 Equations of Motion and the Dielectric Function 74

4.2 Corrections Due to Quantum Mechanics and Local Fields 77

4.3 Spectra of the Dielectric Function and of the Complex Index of Refraction 79

4.4 The Spectra of Reflection and Transmission 85

4.5 Interaction of Close Lying Resonances 88

4.6 Problems 90

References to Chap.4 90

5 The Concept of Polaritons 93

5.1 Polaritons as New Quasiparticles 94

5.2 Dispersion Relation of Polaritons 95

5.3 Polaritons in Solids,Liquids and Gases and from the IR to the X-ray Region 101

5.3.1 Common Optical Properties of Polaritons 101

5.3.2 How the k-vector Develops 105

5.4 Coupled Oscillators and Polaritons with Spatial Dispersion 109

5.4.1 Dielectric Function and the Polariton States with Spatial Dispersion 111

5.4.2 Reflection and Transmission and Additional Boundary Conditions 113

5.5 Real and Imaginary Parts of Wave Vector and Frequency 117

5.6 Surface Polaritons 118

5.7 Problems 121

References to Chap.5 122

6 Kramers-Kronig Relations 125

6.1 General Concepts 125

6.2 Problem 129

References to ChaP.6 129

7 Crystals,Lattices,Lattice Vibrations and Phonons 131

7.1 Adiabatic Approximation 131

7.2 Lattices and Crystal Structures in Real and Reciprocal Space 133

7.3 Vibrations of a String 138

7.4 Linear Chains 140

7.5 Three-Dimensional Crystals 146

7.6 Quantization of Lattice Vibrations:Phonons and the Concept of Quasiparticles 147

7.7 The Density of States and Phonon Statistics 150

7.8 Phonons in Alloys 153

7.9 Defects and Localized Phonon Modes 155

7.10 Phonons in Superlattices and in other Structures of Reduced Dimensionality 157

7.11 Problems 160

References to Chap.7 161

8 Electrons in a Periodic Crystal 163

8.1 Bloch's Theorem 164

8.2 Metals,Semiconductors,Insulators 168

8.3 An Overview of Semiconducting Materials 170

8.4 Electrons and Holes in Crystals as New Quasiparticles 174

8.5 The Effective-Mass Concept 176

8.6 The Polaron Concept and Other Electron-Phonon Interaction Processes 179

8.7 Some Basic Approaches to Band Structure Calculations 182

8.8 Bandstructures of Real Semiconductors 192

8.9 Density of States,Occupation Probability and Critical Points 198

8.10 Electrons and Holes in Quantum Wells and Superlattices 202

8.11 Growth of Quantum Wells and of Superlattices 211

8.12 Quantum Wires 217

8.13 Quantum Dots 219

8.14 Defects.Defect States and Doping 222

8.15 Disordered Systems and Localization 227

8.16 Problems 237

References to Chap.8 238

9 Excitons,Biexcitons and Trions 243

9.1 Wannier and Frenkel Excitons 244

9.2 Corrections to the Simple Exciton Model 249

9.3 The Influence of Dimensionality 252

9.4 Biexcitons and Trions 257

9.5 Bound Exciton Complexes 258

9.6 Excitons in Disordered Systems 259

9.7 Problems 262

References to Chap.9 262

10 Plasmons,Magnons and some Further Elementary Excitations 265

10.1 Plasmons,Pair Excitations and Plasmon-Phonon Mixed States 265

10 2 Magnons and Magnetic Polarons 270

10.3 Problems 272

References to Chap.10 273

11 Optical Properties of Phonons 275

11.1 Phonons in Bulk Semiconductors 275

11.1.1 Reflection Spectra 275

11.1.2 Raman Scattering 277

11.1.3 Phonon Polaritons 279

11.1.4 Brillouin Scattering 280

11.1.5 Surface Phonon Polaritons 281

11.1.6 Phonons in Alloys 281

11.1.7 Defects and Localized Phonon Modes 283

11.2 Phonons in Superlattices 284

11.2.1 Backfolded Acoustic Phonons 284

11.2.2 Confined Optic Phonons 285

11.2.3 Interface Phonons 286

11.3 Phonons in Quantum Dots 287

11.4 Problems 288

References to Chap.11 288

12 Optical Properties of Plasmons,Plasmon-Phonon Mixed States and of Magnons 291

12.1 Surface Plasmons 292

12.2 Plasmon-Phonon Mixed States 293

12.3 Plasmons in Systems of Reduced Dimensionality 295

12.4 Optical Properties of Magnons 296

12.5 Problems 296

References to Chap.12 297

13 Optical Properties of Intrinsic Excitons in Bulk Semiconductors 299

13.1 Excitons with strong Oscillator Strength 299

13.1.1 Exciton-Photon Coupling 299

13.1.2 Consequences of Spatial Dispersion 302

13.1.3 Spectra of Reflection,Transmission and Lumineseence 304

13.1.4 Spectroscopy in Momentum Space 318

13.1.5 Surface-Exciton Polaritons 325

13.1.6 Excitons in Organic Semiconductors and in Insulators 326

13.1.7 Optical Transitions Above the Fundamental Gap and Core Excitons 330

13.2 Forbidden Exciton Transitions 335

13.2.1 Direct Gap Semiconductors 335

13.2.1.1 Triplet States and Related Transitions 335

13.2.1.2 Parity Forbidden Band-to-Band Transitions 336

13.2.2 Indirect Gap Semiconductors 339

13.3 Intraexcitonic Transitions 342

13.4 Problems 345

References to Chap.13 346

14 Optical Properties of Bound and Localized Excitons and of Defect States 351

14.1 Bound-Exciton and Multi-exciton Complexes 351

14.2 Donor-Acceptor Pairs and Related Transitions 359

14.3 Internal Transitions and Deep Centers 361

14.4 Excitons in Disordered Systems 362

14.5 Problems 367

References to Chap.14 367

15 Optical Properties of Excitons in Structures of Reduced Dimensionality 371

15.1 QantumW ells 371

15.2 Coupled Quantum Wells and Superlattices 381

15.3 Quantum Wires 388

15.4 Quantum Dots 392

15.5 Problems 403

References to Chap.15 404

16 Excitons Under the Influence of External Fields 411

16.1 Magnetic Fields 411

16.1.1 Nonmagnetic Bulk Semiconductors 413

16.1.2 Diluted Magnetic Bulk Semiconductors 418

16.1.3 Semiconductor Structures of Reduced Dimensionality 421

16.2 Electric Fields 423

16.2.1 Bulk Semiconductors 424

16.2.2 Semiconductor Structures of Reduced Dimensionality 427

16.3 Strain Fields 429

16.3.1 Bulk Semiconductors 430

16.3.2 Structures of Reduced Dimensionality 433

16.4 Problems 434

References to Chap.16 435

17 From Cavity Polaritons to Photonic Crystals 439

17.1 Cavity Polaritons 439

17.1.1 The Empty Resonator 439

17.1.2 Cavity Polaritons 442

17.2 Photonic Crystals and Photonic Band Gap Structures 444

17.2.1 Introduction to the Basic Concepts 444

17.2.2 Realization of Photonic Crystals and Applications 448

17.3 Photonic Atoms,Molecules and Crystals 451

17.4 Further Developments of Photonic Crystals 455

17.5 A Few Words about Metamaterials 456

17.6 Problerns 458

References to Chap.17 458

18 Review of the Linear Optical Properties 461

18.1 Review of the Linear Optical Properties 461

18.2 Problem 464

References to Chap.18 464

19 High Excitation Effects and Nonlinear Optics 467

19.1 Introduction and Definition 467

19.2 General Scenario for High Excitation Effects 476

19.3 Beyond the x(n)Approximations 479

19.4 Problems 480

References to Chap.19 481

20 The Intermediate Density Regime 483

20.1 Two-Photon Absorption by Excitons 483

20.2 Elastic and Inelastic Scattering Processes 484

20.3 Biexcitons and Trions 487

20.3.1 Bulk Semiconductors 488

20.3.2 Structures ofReduced Dimensionality 498

20.4 Optical or ac Stark Effect 503

20.5 Excitonic Bose-Einstein Condensation 506

20.5.1 Basic Properties 506

20.5.2 Attempts to find BEC in Bulk Semiconductors 508

20.5.3 Structures of Reduced Dimensionality 513

20.5.4 Driven Excitonic Bose-Einstein Condensations 517

20.5.5 Excitonic Insulators and Other Systems 518

20.5.6 Conclusion and Outlook 519

20.6 Photo-thermal Optical Nonlinearities 519

20.7 Problems 520

References to Chap.20 521

21 The Electron-Hole Plasma 529

21.1 The Mott Density 529

21.2 Band Gap Renormalization and Phase Diagram 532

21.3 Electron Hole Plasmas in Bulk Semiconductors 538

21.3.1 Indirect Gap Materials 539

21.3.2 Electron-Hole Plasmas in Direct-Gap Semiconductors 542

21.4 Electron Hole Plasma in Structures of Reduced Dimensionality 552

21.5 Inter-subband Transitions in Unipolar and Bipolar Plasmas 555

21.5.1 Bulk Semiconductors 555

21.5.2 Structures of Reduced Dimensionality 556

21.6 Problems 558

References to Chap.21 558

22 Stimulated Emission and Laser Processes 563

22.1 Excitonic Processes 564

22.2 Electron-Hole Plasmas 572

22.3 Basic Concepts of Laser Diodes and Present Research Trends 573

22.4 Problems 577

References to Chap.22 577

23 Time Resolved Spectroscopy 581

23.1 The Basic Time Constants 582

23.2 Decoherence and Phase Relaxation 588

23.2.1 Determination of the Phase Relaxation Times 588

23.2.1.1 Four-Wave Mixing Experiments 588

23.2.1.2 Other Techniques and Coherent Processes 606

23.2.2 Quantum Coherence,Coherent Control and Non-Markovian Decay 622

23.2.2.1 Markovian versus Non-Markovian Damping 622

23.2.2.2 Damping by LO Phonon Emission and Other Processes 624

23.2.2.3 Rabi Oscillations 628

23.3 Intra-Subband and Inter-Subband Relaxation 631

23.3.1 Formation Times of Various Collective Excitations 631

23.3.2 Intraband and Inter-subband Relaxation 633

23.3.3 Transport Properties 638

23.4 Interband Recombination 639

23.5 Problems 646

References to Chap.23 647

24 Optical Bistability,Optical Computing,Spintronics and Quantum Computing 655

24.1 Optical Bistability 655

24.1.1 Basic Concepts and Mechanisms 656

24.1.2 Dispersive Optical Bistability 657

24.1.3 Optical Bistability Due to Bleaching 660

24.1.4 Induced Absorptive Bistability 662

24.1.5 Electro-Optic Bistability 666

24.1.6 Nonlinear Dynamics 668

24.2 Device Ideas,Digital Optical Computing and Why It Failed 675

24.3 Spintronics 679

24.4 Quantum Computing 679

24.5 Problems 680

References to Chap.24 681

25 Experimental Methods 685

25.1 Linear Optical Spectroscopy 686

25.1.1 Equipment for Linear Spectroscopy 687

25.1.2 Techniques and Results 690

25.2 Nonlinear Optical Spectroscopy 695

25.2.1 Equipment for Nonlinear Optics 695

25.2.2 Experimental Techniques and Results 698

25.2.2.1 One Beam Methods 698

25.2.2.2 Pump-and-Probe Beam Spectroscopy 700

25.2.2.3 Four-Wave Mixing and Laser-Induced Gratings 702

25.3 Time-Resolved Spectroscopy 707

25.3.1 Equipment for Time-Resolved Spectroscopy 707

25.3.2 Experimental Techniques and Results 711

25.3.2.1 Lifetime Measurements 712

25.3.2.2 Intraband and Intersubband Relaxation 713

25.3.2.3 Coherent Processes 714

25.4 Spatially Resolved Spectroscopy 716

25.4.1 Equipment for Spatially Resolved Spectroscopy 717

25.4.2 Experimental Techniques and Results 719

25.5 Spectroscopy Under the Influence of External Fields 721

25.5.1 Equipment for Spectroscopy Under the Influence of External Fields 722

25.5.2 Experimental Techniques and Results 723

25.6 Problems 726

References to Chap.25 726

26 Group Theory in Semiconductor Optics 735

26.1 Introductory Remarks 735

26.2 Some Aspects of Abstract Group Theory for Crystals 736

26.2.1 Some Abstract Definitions 737

26.2.2 Classification of the Group Elements 737

26.2.3 Isomorphism and Homomorphism of Groups 738

26.2.4 Some Examples of Groups 738

26.3 Theory of Representations and of Characters 743

26.4 Hamilton Operator and Group Theory 748

26.5 Applications to Semiconductors Optics 751

26.6 Some Selected Group Tables 761

26.7 Problems 768

References to Chap.26 768

27 Semiconductor Bloch Equations 771

27.1 Dynamics of a Two-Level System 772

27.1.1 Wave-Function Description 773

27.1.2 Polarization and Inversion as State Variables 775

27.1.3 Pseudo-Spin Formulation 776

27.1.4 Linear Response of a Two Level System 777

27.2 Optical Bloch Equations 778

27.2.1 Interband susceptibility 779

27.3 Semiconductor Bloch Equations 780

27.3.1 Excitons 781

27.4 Coherent Processes 784

27.4.1 Pump-Probe 784

27.4.2 Four-Wave Mixing 785

27.4.3 Photon Echo 785

27.5 Problems 789

References to Chap.27 790

The Final Problem 793

Subject Index 795

返回顶部