当前位置:首页 > 数理化
概率论基础教程  英文版
概率论基础教程  英文版

概率论基础教程 英文版PDF电子书下载

数理化

  • 电子书积分:15 积分如何计算积分?
  • 作 者:(美)谢尔登 M.罗斯(Sheldon M.Ross)著
  • 出 版 社:北京:机械工业出版社
  • 出版年份:2017
  • ISBN:9787111561484
  • 页数:466 页
图书介绍:书中通过大量的例子系统介绍了概率论的基础知识及其广泛应用,内容涉及组合分析、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等。各章末附有大量的练习,还在书末给出自检习题的全部解答。
《概率论基础教程 英文版》目录

第1章 组合分析 1

1.1 引言 1

1.2 计数基本法则 2

1.3 排列 3

1.4 组合 5

1.5 多项式系数 9

1.6 方程的整数解个数 12

第2章 概率论公理 21

2.1 引言 21

2.2 样本空间和事件 21

2.3 概率论公理 25

2.4 几个简单命题 28

2.5 等可能结果的样本空间 32

2.6 概率:连续集函数 42

2.7 概率:确信程度的度量 46

第3章 条件概率和独立性 56

3.1 引言 56

3.2 条件概率 56

3.3 贝叶斯公式 62

3.4 独立事件 75

3.5 P(·|F)是概率 89

第4章 随机变量 112

4.1 随机变量 112

4.2 离散型随机变量 116

4.3 期望 119

4.4 随机变量函数的期望 121

4.5 方差 125

4.6 伯努利随机变量和二项随机变量 127

4.7 泊松随机变量 135

4.8 其他离散型概率分布 147

4.9 随机变量和的期望 155

4.10 分布函数的性质 159

第5章 连续型随机变量 176

5.1 引言 176

5.2 连续型随机变量的期望和方差 179

5.3 均匀随机变量 184

5.4 正态随机变量 187

5.5 指数随机变量 197

5.6 其他连续型概率分布 203

5.7 随机变量函数的分布 208

第6章 随机变量的联合分布 220

6.1 联合分布函数 220

6.2 独立随机变量 228

6.3 独立随机变量的和 239

6.4 离散情形下的条件分布 248

6.5 连续情形下的条件分布 250

6.6 次序统计量 256

6.7 随机变量函数的联合分布 260

6.8 可交换随机变量 267

第7章 期望的性质 280

7.1 引言 280

7.2 随机变量和的期望 281

7.3 试验序列中事件发生次数的矩 298

7.4 随机变量和的协方差、方差及相关系数 304

7.5 条件期望 313

7.6 条件期望及预测 330

7.7 矩母函数 334

7.8 正态随机变量的更多性质 345

7.9 期望的一般定义 349

第8章 极限定理 367

8.1 引言 367

8.2 切比雪夫不等式及弱大数定律 367

8.3 中心极限定理 370

8.4 强大数定律 378

8.5 其他不等式 382

8.6 用泊松随机变量逼近独立的伯努利随机变量和的概率误差界 388

第9章 概率论的其他课题 395

9.1 泊松过程 395

9.2 马尔可夫链 397

9.3 惊奇、不确定性及熵 402

9.4 编码定理及熵 405

第10章 模拟 415

10.1 引言 415

10.2 模拟连续型随机变量的一般方法 417

10.3 模拟离散分布 424

10.4 方差缩减技术 426

附录A 部分习题答案 433

附录B 自检习题解答 435

相关图书
作者其它书籍
返回顶部