微分几何专题PDF电子书下载
- 电子书积分:10 积分如何计算积分?
- 作 者:陈省身著
- 出 版 社:北京:高等教育出版社
- 出版年份:2016
- ISBN:9787040465172
- 页数:227 页
1 From Triangles to Manifolds 1
1.1 Geometry 1
1.2 Triangles 1
1.3 Curves in the plane;rotation index and regular homotopy 2
1.4 Euclidean three-space 4
1.5 From coordinate spaces to manifolds 7
1.6 Manifolds;local tools 8
1.7 Homology 9
1.8 Vector fields and generalizations 11
1.9 Elliptic differential equations 12
1.10 Euler characteristic as a source of global invariants 13
1.11 Gauge field theory 13
1.12 Concluding remarks 14
2 Topics in Differential Geometry 17
2.1 General notions on differentiable manifolds 17
2.1.1 Homology and cohomology groups of an abstract complex 17
2.1.2 Product theory 20
2.1.3 An example 22
2.1.4 Algebra of a vector space 24
2.1.5 Differentiable manifolds 26
2.1.6 Multiple integrals 28
2.2 Riemannian manifolds 31
2.2.1 Riemannian manifolds in Euclidean space 31
2.2.2 Imbedding and rigidity problems in Euclidean space 35
2.2.3 Affine connection and absolute differentiation 39
2.2.4 Riemannian metric 41
2.2.5 The Gauss-Bonnet formula 44
2.3 Theory of connections 46
2.3.1 Resume on fiber bundles 47
2.3.2 Connections 49
2.3.3 Local theory of connections;the curvature tensor 52
2.3.4 The homomorphism h and its independence of connection 54
2.3.5 The homomorphism h for the universal bundle 57
2.3.6 The fundamental theorem 60
2.4 Bundles with the classical groups as structural groups 61
2.4.1 Homology groups of Grassmann manifolds 62
2.4.2 Differential forms in Grassmann manifolds 67
2.4.3 Multiplicative properties of the cohomology ring of a Grassmann manifold 74
2.4.4 Some applications 78
2.4.5 Duality theorems 83
2.4.6 An application to projective differential geometry 86
3 Curves and Surfaces in Euclidean Space 89
3.1 Theorem of turning tangents 89
3.2 The four-vertex theorem 94
3.3 Isoperimetric inequality for plane curves 96
3.4 Total curvature of a space curve 100
3.5 Deformation of a space curve 105
3.6 The Gauss-Bonnet formula 108
3.7 Uniqueness theorems of Cohn-Vossen and Minkowski 114
3.8 Bernstein's theorem on minimal surfaces 119
4 Minimal Submanifolds in a Riemannian Manifold 123
4.1 Review of Riemannian geometry 123
4.2 The first vairiation 128
4.3 Minimal submanifolds in Euclidean space 129
4.4 Minimal surfaces in Euclidean space 134
4.5 Minimal submanifolds on the sphere 141
4.6 Laplacian of the second fundamental form 146
4.7 Inequality of Simons 148
4.8 The second variation 151
4.9 Minimal cones in Euclidean space 155
5 Characteristic Classes and Characteristic Forms 163
5.1 Stiefel-Whitney and Pontrjagin classes 163
5.2 Characteristic classes in terms of curvature 165
5.3 Transgression 166
5.4 Holomorphic line bundles and the Nevanlinna theory 168
6 Geometry and Physics 171
6.1 Euclid 171
6.2 Geometry and physics 172
6.3 Groups of transformations 172
6.4 Riemannian geometry 173
6.5 Relativity 173
6.6 Unified field theory 173
6.7 Weyl's abelian gauge field theory 174
6.8 Vector bundles 175
6.9 Why Gauge theory 175
7 The Geometry of G-Structures 177
7.1 Introduction 177
7.2 Riemannian structure 179
7.3 Connections 182
7.4 G-structure 185
7.5 Harmonic forms 189
7.6 Leaved structure 192
7.7 Complex structure 194
7.8 Sheaves 198
7.9 Characteristic classes 202
7.10 Riemann-Roch,Hirzebruch,Grothendieck,and Atiyah-Singer Theorems 207
7.11 Holomorphic mappings of complex analytic manifolds 212
7.12 Isometric mappings of Riemannian manifolds 216
7.13 General theory of G-structures 218
- 《新时代基层党校党性教育教学专题实务》郭志龙主编 2019
- 《新时期大学生就业创业专题研究》孟秦,梁玲萍,梅超主编 2018
- 《科学建构 从几何模型到物理世界》(中国)江晓原 2019
- 《好玩的几何 和平面图形玩耍吧》米里亚娜·拉多万诺维奇 2019
- 《基于光谱和几何特征的高分影像道路提取研究》苗则朗,史文中,贺跃光著 2019
- 《一级注册结构工程师专业考试 历年试题·疑问解答·专题聚焦 第8版》张庆芳,申兆武著 2018
- 《方程组实数解的几何方法 影印版》Frank Sottile 2018
- 《素描几何形体与素描静物 第3册》马锦天 2015
- 《中国北方农业历史地理专题研究》李令福著 2019
- 《中国医疗卫生事业发展报告 公共卫生与预防保健专题 2018》方鹏骞 2019
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《全国高等中医药行业“十三五”创新教材 中医药学概论》翟华强 2019
- 《培智学校义务教育实验教科书教师教学用书 生活适应 二年级 上》人民教育出版社,课程教材研究所,特殊教育课程教材研究中心编著 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《习近平总书记教育重要论述讲义》本书编写组 2020
- 《办好人民满意的教育 全国教育满意度调查报告》(中国)中国教育科学研究院 2019
- 《高等数学试题与详解》西安电子科技大学高等数学教学团队 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《教育学考研应试宝典》徐影主编 2019
- 《语文教育教学实践探索》陈德收 2018
- 《家庭音乐素养教育》刘畅 2018