金融衍生工具PDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:(美)巴兹(Baz,J.)著
- 出 版 社:北京:北京大学出版社
- 出版年份:2005
- ISBN:7301096801
- 页数:338 页
Contents 1
Introduction 1
1 Preliminary Mathematics 5
1.1 Random Walk 5
1.2 Another Take on Volatility and Time 8
1.3 A First Glance at It?'s Lemma 9
1.4 Continuous Time:Brownian Motion;More on It?'s Lemma 11
1.5 Two-Dimensional Brownian Motion 14
1.6 Bivariate It?'s Lemma 15
1.7 Three Paradoxes of Finance 16
1.7.1 Paradox 1:Siegel's Paradox 16
1.7.2 Paradox 2:The Stock,Free-Lunch Paradox 18
1.7.3 Paradox 3:The Skill Versus Luck Paradox 19
2 Principles of Financial Valuation 22
2.1 Uncertainty,Utility Theory,and Risk 22
2.2 Risk and the Equilibrium Pricing of Securities 28
2.3 The Binomial Option-Pricing Model 41
2.4 Limiting Option-Pricing Formula 46
2.5 Continuous-Time Models 47
2.5.1 The Black-Scholes/Merton Model-Pricing Kernel Approach 48
2.5.2 The Black-Scholes/Merton Model-Probabilistic Approach 57
2.5.3 The Black-Scholes/Merton Model-Hedging Approach 61
2.6 Exotic Options 63
2.6.1 Digital Options 64
2.6.2 Power Options 65
2.6.3 Asian Options 67
2.6.4 Barrier Options 71
3 Interest Rate Models 78
3.1 Interest Rate Derivatives:Not So Simple 78
3.2 Bonds and Yields 80
3.2.1 Prices and Yields to Maturity 80
3.2.2 Discount Factors,Zero-Coupon Rates, and Coupon Bias 82
3.2.3 Forward Rates 85
3.3 Naive Models of Interest Rate Risk 88
3.3.1 Duration 88
3.3.2 Convexity 99
3.3.3 The Free Lunch in the Duration Model 104
3.4 An Overview of Interest Rate Derivatives 108
3.4.1 Bonds with Embedded Options 109
3.4.2 Forward Rate Agreements 110
3.4.3 Eurostrip Futures 112
3.4.4 The Convexity Adjustment 113
3.4.5 Swaps 118
3.4.6 Caps and Floors 120
3.4.7 Swaptions 121
3.5 Yield Curve Swaps 122
3.5.1 The CMS Swap 122
3.5.2 The Quanto Swap 127
3.6 Factor Models 131
3.6.1 A General Single-Factor Model 131
3.6.2 The Merton Model 135
3.6.3 The Vasicek Model 139
3.6.4 The Cox-Ingersoll-Ross Model 142
3.6.5 Risk-Neutral Valuation 144
3.7 Term-Structure-Consistent Models 147
3.7.1 "Equilibrium"Versus"Fitting" 147
3.7.2 The Ho-Lee Model 153
3.7.3 The Ho-Lee Model with Time-Varying Volatility 157
3.7.4 The Black-Derman-Toy Model 162
3.8 Risky Bonds and Their Derivatives 166
3.8.1 The Merton Model 167
3.8.2 The Jarrow-Turnbull Model 168
3.9 The Heath,Jarrow,and Morton Approach 172
3.10 Interest Rates as Options 180
4 Mathematics of Asset Pricing 184
4.1 Random Walks 184
4.1.1 Description 184
4.1.2 Gambling Recreations 186
4.2 Arithmetic Brownian Motion 192
4.2.1 Arithmetic Brownian Motion as a Limit of a Simple Random Walk 192
4.2.2 Moments of an Arithmetic Brownian Motion 196
4.2.3 Why Sample Paths Are Not Differentiable 198
4.2.4 Why Sample Paths Are Continuous 198
4.2.5 Extreme Values and Hitting Times 199
4.2.6 The Arcsine Law Revisited 203
4.3 Geometric Brownian Motion 204
4.3.1 Description 204
4.3.2 Moments of a Geometric Brownian Motion 207
4.4 It? Calculus 209
4.4.1 Riemann-Stieljes,Stratonovitch,and It? Integrals 209
4.4.2 It?'s Lemma 214
4.4.3 Multidimensional It?'s Lemma 222
4.5 Mean-Reverting Processes 225
4.5.1 Introduction 225
4.5.2 The Ornstein-Uhlenbeck Process 225
4.5.3 Calculations of Moments with the Dynkin Operator 226
4.5.4 The Square-Root Process 228
4.6 Jump Process 229
4.6.1 Pure Jumps 229
4.6.2 Time Between Two Jumps 231
4.6.3 Jump Diffusions 232
4.6.4 It?'s Lemma for Jump Diffusions 233
4.7 Kolmogorov Equations 234
4.7.1 The Kolmogorov Forward Equation 234
4.7.2 The Dirac Delta Function 236
4.7.3 The Kolmogorov Backward Equation 236
4.8 Martingales 239
4.8.1 Definitions and Examples 239
4.8.2 Some Useful Facts About Martingales 241
4.8.3 Martingales and Brownian Motion 242
4.9 Dynamic Programming 245
4.9.1 The Traveling Salesman 245
4.9.2 Optimal Control of It? Processes:Finite Horizon 247
4.9.3 Optimal Control of It? Processes:Infinite Horizon 248
4.10 Partial Differential Equations 253
4.10.1 The Kolmogorov Forward Equation Revisited 253
4.10.2 Risk-Neutral Pricing Equation 256
4.10.3 The Laplace Transform 257
4.10.4 Resolution of the Kolmogorov Forward Equation 262
4.10.5 Resolution of the Risk-Neutral Pricing Equation 265
Bibliography 269
Index 327
- 《中间体衍生化方法与新农药创制》刘长令,关爱莹,谢勇著 2019
- 《金融思维》李国平著 2020
- 《管理者的思维工具》(美)詹姆斯.曼特罗(JamesManktelow)朱利安·伯金肖(JulianBirkins 2019
- 《万物探索 交通工具》焦庆锋主编 2018
- 《看得懂的金融投资课》向松祚著 2019
- 《香豆素衍生物合成与农药活性研究》(中国)郝双红 2019
- 《常用工具软件立体化教程》谭桂华,王伟,彭凯 2019
- 《财富分层、社会网络与家庭金融资产选择》王阳著 2019
- 《财富管理的行为金融》邓鑫译者;(美)迈克尔·M.庞皮恩 2020
- 《经济学前沿译丛 银行流动性创造与金融危机》艾伦·N.伯格,克里斯塔·H.S.鲍 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019