孤立子理论中的哈密顿方法 英文PDF电子书下载
- 电子书积分:17 积分如何计算积分?
- 作 者:(俄)雷斯尼克著
- 出 版 社:北京:世界图书北京出版公司
- 出版年份:2013
- ISBN:9787510058264
- 页数:592 页
Introduction 1
References 7
Part One.The Nonlinear Schr?dinger Equation(NS Model) 9
Chapter Ⅰ.Zero Curvature Representation 11
1.Formulation of the NS Model 11
2.Zero Curvature Condition 20
3.Properties of the Monodromy Matrix in the Quasi-Periodic Case 26
4.Local Integrals of the Motion 33
5.The Monodromy Matrix in the Rapidly Decreasing Case 39
6.Analytic Properties of Transition Coefficients 46
7.The Dynamics of Transition Coefficients 51
8.The Case of Finite Density.Jost Solutions 55
9.The Case of Finite Density.Transition Coefficients 62
10.The Case of Finite Density.Time Dynamics and Integrals of the Motion 72
11.Notes and References 78
References 80
Chapter Ⅱ.The Riemann Problem 81
1.The Rapidly Decreasing Case.Formulation of the Riemann Problem 81
2.The Rapidly Decreasing Case.Analysis of the Riemann Prob-lem 89
3.Application of the Inverse Scattering Problem to the NS Model 108
4.Relationship Between the Riemann Problem Method and the Gelfand-Levitan-Marchenko Integral Equations Formulation 114
5.The Rapidly Decreasing Case.Soliton Solutions 126
6.Solution of the Inverse Problem in the Case of Finite Density.The Riemann Problem Method 137
7.Solution of the Inverse Problem in the Case of Finite Density.The Gelfand-Levitan-Marchenko Formulation 146
8.Soliton Solutions in the Case of Finite Density 165
9.Notes and References 177
References 182
Chapter Ⅲ.The Hamiltonian Formulation 186
1.Fundamental Poisson Brackets and the r-Matrix 186
2.Poisson Commutativity of the Motion Integrals in the Quasi-Periodic Case 194
3.Derivation of the Zero Curvature Representation from the Fun-damental Poisson Brackets 199
4.Integrals of the Motion in the Rapidly Decreasing Case and in the Case of Finite Density 205
5.The ?-Operator and a Hierarchy of Poisson Structures 210
6.Poisson Brackets of Transition Coefficients in the Rapidly Decreasing Case 222
7.Action-Angle Variables in the Rapidly Decreasing Case 229
8.Soliton Dynamics from the Hamiltonian Point of View 241
9.Complete Integrability in the Case of Finite Density 249
10.Notes and References 267
References 274
Part Two.General Theory of Integrable Evolution Equations 279
Chapter Ⅰ.Basic Examples and Their General Properties 281
1.Formulation of the Basic Continuous Models 281
2.Examples of Lattice Models 292
3.Zero Curvature Representation as a Method for Constructing Integrable Equations 305
4.Gauge Equivalence of the NS Model(x=-1)and the HM Model 315
5.Hamiltonian Formulation of the Chiral Field Equations and Related Models 321
6.The Riemann Problem as a Method for Constructing Solutions of Integrable Equations 333
7.A Scheme for Constructing the General Solution of the Zero Curvature Equation.Concluding Remarks on Integrable Equa-tions 339
8.Notes and References 345
References 350
Chapter Ⅱ.Fundamental Continuous Models 356
1.The Auxiliary Linear Problem for the HM Model 356
2.The Inverse Problem for the HM Model 370
3.Hamiltonian Formulation of the HM Model 384
4.The Auxiliary Linear Problem for the SG Model 393
5.The Inverse Problem for the SG Model 407
6.Hamiltonian Formulation of the SG Model 431
7.The SG Model in Light-Cone Coordinates 446
8.The Landau-Lifshitz Equation as a Universal Integrable Model with Two-Dimensional Auxiliary Space 457
9.Notes and References 463
References 467
Chapter Ⅲ.Fundamental Models on the Lattice 471
1.Complete Integrability of the Toda Model in the Quasi-Peri-odic Case 471
2.The Auxiliary Linear Problem for the Toda Model in the Rap-idly Decreasing Case 475
3.The Inverse Problem and Soliton Dynamics for the Toda Model in the Rapidly Decreasing Case 489
4.Complete Integrability of the Toda Model in the Rapidly Decreasing Case 499
5.The Lattice LL Model as a Universal Integrable System with Two-Dimensional Auxiliary Space 508
6.Notes and References 519
References 521
Chapter Ⅳ.Lie-Algebraic Approach to the Classification and Analysis of Integrable Models 523
1.Fundamental Poisson Brackets Generated by the Current Alge-bra 523
2.Trigonometric and Elliptic r-Matrices and the Related Funda-mental Poisson Brackets 533
3.Fundamental Poisson Brackets on the Lattice 540
4.Geometric Interpretation of the Zero Curvature Representation and the Riemann Problem Method 543
5.The General Scheme as Illustrated with the NS Model 558
6.Notes and References 566
References 573
Conclusion 577
List of Symbols 579
Index 585
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《SQL与关系数据库理论》(美)戴特(C.J.Date) 2019
- 《联吡啶基钌光敏染料的结构与性能的理论研究》李明霞 2019
- 《情报学 服务国家安全与发展的现代情报理论》赵冰峰著 2018
- 《英汉翻译理论的多维阐释及应用剖析》常瑞娟著 2019
- 《新课标背景下英语教学理论与教学活动研究》应丽君 2018
- 《党员干部理论学习培训教材 理论热点问题党员干部学习辅导》(中国)胡磊 2018
- 《虚拟流域环境理论技术研究与应用》冶运涛蒋云钟梁犁丽曹引等编著 2019
- 《当代翻译美学的理论诠释与应用解读》宁建庚著 2019
- 《基于地质雷达信号波的土壤重金属污染探测方法研究》赵贵章 2019
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017