信用风险的建模、评估和对冲 英文PDF电子书下载
- 电子书积分:16 积分如何计算积分?
- 作 者:(美)别莱茨基(BIELECKIT.R.)著
- 出 版 社:北京/西安:世界图书出版公司
- 出版年份:2013
- ISBN:7510058080
- 页数:501 页
Part Ⅰ.Structural Approach 3
1.Introduction to Credit Risk 3
1.1 Corporate Bonds 4
1.1.1 Recovery Rules 5
1.1.2 Safety Covenants 6
1.1.3 Credit Spreads 7
1.1.4 Credit Ratings 7
1.1.5 Corporate Coupon Bonds 8
1.1.6 Fixed and Floating Rate Notes 9
1.1.7 Bank Loans and Sovereign Debt 11
1.1.8 Cross Default 11
1.1.9 Default Correlations 11
1.2 Vulnerable Claims 12
1.2.1 Vulnerable Claims with Unilateral Default Risk 12
1.2.2 Vulnerable Claims with Bilateral Default Risk 13
1.2.3 Defaultable Interest Rate Contracts 14
1.3 Credit Derivatives 16
1.3.1 Default Swaps and Options 18
1.3.2 Total Rate of Return Swaps 21
1.3.3 Credit Linked Notes 22
1.3.4 Asset Swaps 24
1.3.5 First-to-Default Contracts 24
1.3.6 Credit Spread Swaps and Options 25
1.4 Quantitative Models of Credit Risk 26
1.4.1 Structural Models 26
1.4.2 Reduced-Form Models 27
1.4.3 Credit Risk Management 29
1.4.4 Liquidity Risk 30
1.4.5 Econometric Studies 30
2.Corporate Debt 31
2.1 Defaultable Claims 33
2.1.1 Risk-Neutral Valuation Formula 34
2.1.2 Self-Financing Trading Strategies 37
2.1.3 Martingale Measures 38
2.2 PDE Approach 40
2.2.1 PDE for the Value Function 44
2.2.2 Corporate Zero-Coupon Bonds 47
2.2.3 Corporate Coupon Bond 50
2.3 Merton's Approach to Corporate Debt 51
2.3.1 Merton's Model with Deterministic Interest Rates 51
2.3.2 Distance-to-Default 57
2.4 Extensions of Merton's Approach 58
2.4.1 Models with Stochastic Interest Rates 59
2.4.2 Discontinuous Value Process 60
2.4.3 Buffet's Approach 64
3.First-Passage-Time Models 65
3.1 Properties of First Passage Times 66
3.1.1 Probability Law of the First Passage Time 67
3.1.2 Joint Probability Law of Y and τ 69
3.2 Black and Cox Model 71
3.2.1 Corporate Zero-Coupon Bond 71
3.2.2 Corporate Coupon Bond 79
3.2.3 Corporate Consol Bond 81
3.3 Optimal Capital Structure 82
3.3.1 Black and Cox Approach 82
3.3.2 Leland's Approach 84
3.3.3 Leland and Toft Approach 86
3.3.4 Further Developments 88
3.4 Models with Stochastic Interest Rates 90
3.4.1 Kim,Ramaswamy and Sundaresan Approach 96
3.4.2 Longstaff and Schwartz Approach 98
3.4.3 Cathcart and E1-Jahel Approach 103
3.4.4 Briys and de Varenne Approach 104
3.4.5 Saá-Requejo and Santa-Clara Approach 107
3.5 Further Developments 113
3.5.1 Convertible Bonds 113
3.5.2 Jump-Diffusion Models 113
3.5.3 Incomplete Accounting Data 113
3.6 Dependent Defaults:Structural Approach 114
3.6.1 Default Correlations:J.P.Morgan's Approach 116
3.6.2 Default Correlations:Zhou's Approach 117
Part Ⅱ.Hazard Processes 123
4.Hazard Function of a Random Time 123
4.1 Conditional Expectations w.r.t.Natural Filtrations 123
4.2 Martingales Associated with a Continuous Hazard Function 127
4.3 Martingale Representation Theorem 131
4.4 Change of a Probability Measure 133
4.5 Martingale Characterization of the Hazard Function 137
4.6 Compensator of a Random Time 140
5.Hazard Process of a Random Time 141
5.1 Hazard Process Γ 141
5.1.1 Conditional Expectations 143
5.1.2 Semimartingale Representation of the Stopped Process 150
5.1.3 Martingales Associated with the Hazard Process Γ 152
5.1.4 Stochastic Intensity of a Random Time 155
5.2 Martingale Representation Theorems 156
5.2.1 General Case 156
5.2.2 Case of a Brownian Filtration 159
5.3 Change of a Probability Measure 162
6.Martingale Hazard Process 165
6.1 Martingale Hazard Process Λ 165
6.1.1 Martingale Invariance Property 166
6.1.2 Evaluation of Λ: Special Case 167
6.1.3 Evaluation of Λ: General Case 169
6.1.4 Uniqueness of a Martingale Hazard Process Λ 172
6.2 Relationships Between Hazard Processes Γ and Λ 173
6.3 Martingale Representation Theorem 177
6.4 Case of the Martingale Invariance Property 179
6.4.1 Valuation of Defaultable Claims 180
6.4.2 Case of a Stopping Time 182
6.5 Random Time with a Given Hazard Process 183
6.6 Poisson Process and Conditional Poisson Process 186
7.Case of Several Random Times 197
7.1 Minimum of Several Random Times 197
7.1.1 Hazard Function 198
7.1.2 Martingale Hazard Process 198
7.1.3 Martingale Representation Theorem 200
7.2 Change of a Probability Measure 203
7.3 Kusuoka's Counter-Example 209
7.3.1 Validity of Condition(F.2) 216
7.3.2 Validity of Condition(M.1) 218
Part Ⅲ.Reduced-Form Modeling 221
8.Intensity-Based Valuation of Defaultable Claims 221
8.1 Defaultable Claims 222
8.1.1 Risk-Neutral Valuation Formula 223
8.2 Valuation via the Hazard Process 225
8.2.1 Canonical Construction of a Default Time 227
8.2.2 Integral Representation of the Value Process 230
8.2.3 Case of a Deterministic Intensity 232
8.2.4 Implied Probabilities of Default 234
8.2.5 Exogenous Recovery Rules 236
8.3 Valuation via the Martingale Approach 239
8.3.1 Martingale Hypotheses 242
8.3.2 Endogenous Recovery Rules 243
8.4 Hedging of Defaultable Claims 246
8.5 General Reduced-Form Approach 250
8.6 Reduced-Form Models with State Variables 253
8.6.1 Lando's Approach 253
8.6.2 Duffie and Singleton Approach 255
8.6.3 Hybrid Methodologies 259
8.6.4 Credit Spread Models 264
9.Conditionally Independent Defaults 265
9.1 Basket Credit Derivatives 266
9.1.1 Mutually Independent Default Times 267
9.1.2 Conditionally Independent Default Times 268
9.1.3 Valuation of the ith-to-Default Contract 274
9.1.4 Vanilla Default Swaps of Basket Type 281
9.2 Default Correlations and Conditional Probabilities 284
9.2.1 Default Correlations 284
9.2.2 Conditional Probabilities 287
10.Dependent Defaults 293
10.1 Dependent Intensities 295
10.1.1 Kusuoka's Approach 295
10.1.2 Jarrow and Yu Approach 296
10.2 Martingale Approach to Basket Credit Derivatives 306
10.2.1 Valuation of the ith-to-Default Claims 311
11.Markov Chains 313
11.1 Discrete-Time Markov Chains 314
11.1.1 Change of a Probability Measure 316
11.1.2 The Law of the Absorption Time 320
11.1.3 Discrete-Time Conditionally Markov Chains 322
11.2 Continuous-Time Markov Chains 324
11.2.1 Embedded Discrete-Time Markov Chain 329
11.2.2 Conditional Expectations 329
11.2.3 Probability Distribution of the Absorption Time 332
11.2.4 Martingales Associated with Transitions 333
11.2.5 Change of a Probability Measure 334
11.2.6 Identification of the Intensity Matrix 338
11.3 Continuous-Time Conditionally Markov Chains 340
11.3.1 Construction of a Conditionally Markov Chain 342
11.3.2 Conditional Markov Property 346
11.3.3 Associated Local Martingales 347
11.3.4 Forward Kolmogorov Equation 350
12.Markovian Models of Credit Migrations 351
12.1 JLT Markovian Model and its Extensions 352
12.1.1 JLT Model: Discrete-Time Case 354
12.1.2 JLT Model: Continuous-Time Case 362
12.1.3 Kijima and Komoribayashi Model 367
12.1.4 Das and Tufano Model 369
12.1.5 Thomas,Allen and Morkel-Kingsbury Model 371
12.2 Conditionally Markov Models 373
12.2.1 Lando's Approach 374
12.3 Correlated Migrations 376
12.3.1 Huge and Lando Approach 380
13.Heath-Jarrow-Morton Type Models 385
13.1 HJM Model with Default 386
13.1.1 Model's Assumptions 386
13.1.2 Default-Free Term Structure 388
13.1.3 Pre-Default Value of a Corporate Bond 390
13.1.4 Dynamics of Forward Credit Spreads 392
13.1.5 Default Time of a Corporate Bond 394
13.1.6 Case of Zero Recovery 397
13.1.7 Default-Free and Defaultable LIBOR Rates 398
13.1.8 Case of a Non-Zero Recovery Rate 400
13.1.9 Alternative Recovery Rules 403
13.2 HJM Model with Credit Migrations 405
13.2.1 Model's Assumption 405
13.2.2 Migration Process 407
13.2.3 Special Case 408
13.2.4 General Case 410
13.2.5 Alternative Recovery Schemes 413
13.2.6 Defaultable Coupon Bonds 415
13.2.7 Default Correlations 416
13.2.8 Market Prices of Interest Rate and Credit Risk 417
13.3 Applications to Credit Derivatives 421
13.3.1 Valuation of Credit Derivatives 421
13.3.2 Hedging of Credit Derivatives 422
14.Defaultable Market Rates 423
14.1 Interest Rate Contracts with Default Risk 424
14.1.1 Default-Free LIBOR and Swap Rates 424
14.1.2 Defaultable Spot LIBOR Rates 426
14.1.3 Defaultable Spot Swap Rates 427
14.1.4 FRAs with Unilateral Default Risk 428
14.1.5 Forward Swaps with Unilateral Default Risk 432
14.2 Multi-Period IRAs with Unilateral Default Risk 434
14.3 Multi-Period Defaultable Forward Nominal Rates 438
14.4 Defaultable Swaps with Unilateral Default Risk 441
14.4.1 Settlement of the 1st Kind 442
14.4.2 Settlement of the 2nd Kind 444
14.4.3 Settlement of the 3rd Kind 445
14.4.4 Market Conventions 446
14.5 Defaultable Swaps with Bilateral Default Risk 447
14.6 Defaultable Forward Swap Rates 449
14.6.1 Forward Swaps with Unilateral Default Risk 449
14.6.2 Forward Swaps with Bilateral Default Risk 450
15.Modeling of Market Rates 451
15.1 Models of Default-Free Market Rates 452
15.1.1 Modeling of Forward LIBOR Rates 452
15.1.2 Modeling of Forward Swap Rates 458
15.2 Modeling of Defaultable Forward LIBOR Rates 465
15.2.1 Lotz and Schl?gl Approach 465
15.2.2 Sch?nbucher's Approach 469
References 479
Basic Notation 495
Subject Index 497
- 《长三角雾霾突发事件风险评估、应急决策及联动防治机制研究》叶春明著 2019
- 《风险管理与保险》(中国)粟芳 2019
- 《信用证英语》翟步习编著 2019
- 《有机磷酸酯的暴露、毒性机制及环境风险评估》许宜平,王子健等著 2019
- 《交通工程安全风险管控与隐患排查一体化理论方法与信息化管理技术》王海燕著 2019
- 《危险化学品企业安全风险隐患排查治理导则解读》中国化学品安全协会 2019
- 《农田温室气体排放评估与减排技术》江丽华编著 2019
- 《中国省级环境绩效评估》董战峰等编著 2019
- 《环境问题分析与相关政策评估 经济学分析方法及应用》安祺 2019
- 《大数据建模方法》张平文,戴文渊,黄晶编著 2019
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《小手画出大世界 恐龙世界》登亚编绘 2008
- 《近代世界史文献丛编 19》王强主编 2017
- 《课堂上听不到的历史传奇 世界政治军事名人 初中版》顾跃忠等编著 2015
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《365奇趣英语乐园 世界民间故事》爱思得图书国际企业 2018
- 《近代世界史文献丛编 36》王强主编 2017
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《近代世界史文献丛编 11》王强主编 2017
- 《近代世界史文献丛编 18》王强主编 2017