当前位置:首页 > 数理化
信用风险的建模、评估和对冲  英文
信用风险的建模、评估和对冲  英文

信用风险的建模、评估和对冲 英文PDF电子书下载

数理化

  • 电子书积分:16 积分如何计算积分?
  • 作 者:(美)别莱茨基(BIELECKIT.R.)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2013
  • ISBN:7510058080
  • 页数:501 页
图书介绍:
《信用风险的建模、评估和对冲 英文》目录

Part Ⅰ.Structural Approach 3

1.Introduction to Credit Risk 3

1.1 Corporate Bonds 4

1.1.1 Recovery Rules 5

1.1.2 Safety Covenants 6

1.1.3 Credit Spreads 7

1.1.4 Credit Ratings 7

1.1.5 Corporate Coupon Bonds 8

1.1.6 Fixed and Floating Rate Notes 9

1.1.7 Bank Loans and Sovereign Debt 11

1.1.8 Cross Default 11

1.1.9 Default Correlations 11

1.2 Vulnerable Claims 12

1.2.1 Vulnerable Claims with Unilateral Default Risk 12

1.2.2 Vulnerable Claims with Bilateral Default Risk 13

1.2.3 Defaultable Interest Rate Contracts 14

1.3 Credit Derivatives 16

1.3.1 Default Swaps and Options 18

1.3.2 Total Rate of Return Swaps 21

1.3.3 Credit Linked Notes 22

1.3.4 Asset Swaps 24

1.3.5 First-to-Default Contracts 24

1.3.6 Credit Spread Swaps and Options 25

1.4 Quantitative Models of Credit Risk 26

1.4.1 Structural Models 26

1.4.2 Reduced-Form Models 27

1.4.3 Credit Risk Management 29

1.4.4 Liquidity Risk 30

1.4.5 Econometric Studies 30

2.Corporate Debt 31

2.1 Defaultable Claims 33

2.1.1 Risk-Neutral Valuation Formula 34

2.1.2 Self-Financing Trading Strategies 37

2.1.3 Martingale Measures 38

2.2 PDE Approach 40

2.2.1 PDE for the Value Function 44

2.2.2 Corporate Zero-Coupon Bonds 47

2.2.3 Corporate Coupon Bond 50

2.3 Merton's Approach to Corporate Debt 51

2.3.1 Merton's Model with Deterministic Interest Rates 51

2.3.2 Distance-to-Default 57

2.4 Extensions of Merton's Approach 58

2.4.1 Models with Stochastic Interest Rates 59

2.4.2 Discontinuous Value Process 60

2.4.3 Buffet's Approach 64

3.First-Passage-Time Models 65

3.1 Properties of First Passage Times 66

3.1.1 Probability Law of the First Passage Time 67

3.1.2 Joint Probability Law of Y and τ 69

3.2 Black and Cox Model 71

3.2.1 Corporate Zero-Coupon Bond 71

3.2.2 Corporate Coupon Bond 79

3.2.3 Corporate Consol Bond 81

3.3 Optimal Capital Structure 82

3.3.1 Black and Cox Approach 82

3.3.2 Leland's Approach 84

3.3.3 Leland and Toft Approach 86

3.3.4 Further Developments 88

3.4 Models with Stochastic Interest Rates 90

3.4.1 Kim,Ramaswamy and Sundaresan Approach 96

3.4.2 Longstaff and Schwartz Approach 98

3.4.3 Cathcart and E1-Jahel Approach 103

3.4.4 Briys and de Varenne Approach 104

3.4.5 Saá-Requejo and Santa-Clara Approach 107

3.5 Further Developments 113

3.5.1 Convertible Bonds 113

3.5.2 Jump-Diffusion Models 113

3.5.3 Incomplete Accounting Data 113

3.6 Dependent Defaults:Structural Approach 114

3.6.1 Default Correlations:J.P.Morgan's Approach 116

3.6.2 Default Correlations:Zhou's Approach 117

Part Ⅱ.Hazard Processes 123

4.Hazard Function of a Random Time 123

4.1 Conditional Expectations w.r.t.Natural Filtrations 123

4.2 Martingales Associated with a Continuous Hazard Function 127

4.3 Martingale Representation Theorem 131

4.4 Change of a Probability Measure 133

4.5 Martingale Characterization of the Hazard Function 137

4.6 Compensator of a Random Time 140

5.Hazard Process of a Random Time 141

5.1 Hazard Process Γ 141

5.1.1 Conditional Expectations 143

5.1.2 Semimartingale Representation of the Stopped Process 150

5.1.3 Martingales Associated with the Hazard Process Γ 152

5.1.4 Stochastic Intensity of a Random Time 155

5.2 Martingale Representation Theorems 156

5.2.1 General Case 156

5.2.2 Case of a Brownian Filtration 159

5.3 Change of a Probability Measure 162

6.Martingale Hazard Process 165

6.1 Martingale Hazard Process Λ 165

6.1.1 Martingale Invariance Property 166

6.1.2 Evaluation of Λ: Special Case 167

6.1.3 Evaluation of Λ: General Case 169

6.1.4 Uniqueness of a Martingale Hazard Process Λ 172

6.2 Relationships Between Hazard Processes Γ and Λ 173

6.3 Martingale Representation Theorem 177

6.4 Case of the Martingale Invariance Property 179

6.4.1 Valuation of Defaultable Claims 180

6.4.2 Case of a Stopping Time 182

6.5 Random Time with a Given Hazard Process 183

6.6 Poisson Process and Conditional Poisson Process 186

7.Case of Several Random Times 197

7.1 Minimum of Several Random Times 197

7.1.1 Hazard Function 198

7.1.2 Martingale Hazard Process 198

7.1.3 Martingale Representation Theorem 200

7.2 Change of a Probability Measure 203

7.3 Kusuoka's Counter-Example 209

7.3.1 Validity of Condition(F.2) 216

7.3.2 Validity of Condition(M.1) 218

Part Ⅲ.Reduced-Form Modeling 221

8.Intensity-Based Valuation of Defaultable Claims 221

8.1 Defaultable Claims 222

8.1.1 Risk-Neutral Valuation Formula 223

8.2 Valuation via the Hazard Process 225

8.2.1 Canonical Construction of a Default Time 227

8.2.2 Integral Representation of the Value Process 230

8.2.3 Case of a Deterministic Intensity 232

8.2.4 Implied Probabilities of Default 234

8.2.5 Exogenous Recovery Rules 236

8.3 Valuation via the Martingale Approach 239

8.3.1 Martingale Hypotheses 242

8.3.2 Endogenous Recovery Rules 243

8.4 Hedging of Defaultable Claims 246

8.5 General Reduced-Form Approach 250

8.6 Reduced-Form Models with State Variables 253

8.6.1 Lando's Approach 253

8.6.2 Duffie and Singleton Approach 255

8.6.3 Hybrid Methodologies 259

8.6.4 Credit Spread Models 264

9.Conditionally Independent Defaults 265

9.1 Basket Credit Derivatives 266

9.1.1 Mutually Independent Default Times 267

9.1.2 Conditionally Independent Default Times 268

9.1.3 Valuation of the ith-to-Default Contract 274

9.1.4 Vanilla Default Swaps of Basket Type 281

9.2 Default Correlations and Conditional Probabilities 284

9.2.1 Default Correlations 284

9.2.2 Conditional Probabilities 287

10.Dependent Defaults 293

10.1 Dependent Intensities 295

10.1.1 Kusuoka's Approach 295

10.1.2 Jarrow and Yu Approach 296

10.2 Martingale Approach to Basket Credit Derivatives 306

10.2.1 Valuation of the ith-to-Default Claims 311

11.Markov Chains 313

11.1 Discrete-Time Markov Chains 314

11.1.1 Change of a Probability Measure 316

11.1.2 The Law of the Absorption Time 320

11.1.3 Discrete-Time Conditionally Markov Chains 322

11.2 Continuous-Time Markov Chains 324

11.2.1 Embedded Discrete-Time Markov Chain 329

11.2.2 Conditional Expectations 329

11.2.3 Probability Distribution of the Absorption Time 332

11.2.4 Martingales Associated with Transitions 333

11.2.5 Change of a Probability Measure 334

11.2.6 Identification of the Intensity Matrix 338

11.3 Continuous-Time Conditionally Markov Chains 340

11.3.1 Construction of a Conditionally Markov Chain 342

11.3.2 Conditional Markov Property 346

11.3.3 Associated Local Martingales 347

11.3.4 Forward Kolmogorov Equation 350

12.Markovian Models of Credit Migrations 351

12.1 JLT Markovian Model and its Extensions 352

12.1.1 JLT Model: Discrete-Time Case 354

12.1.2 JLT Model: Continuous-Time Case 362

12.1.3 Kijima and Komoribayashi Model 367

12.1.4 Das and Tufano Model 369

12.1.5 Thomas,Allen and Morkel-Kingsbury Model 371

12.2 Conditionally Markov Models 373

12.2.1 Lando's Approach 374

12.3 Correlated Migrations 376

12.3.1 Huge and Lando Approach 380

13.Heath-Jarrow-Morton Type Models 385

13.1 HJM Model with Default 386

13.1.1 Model's Assumptions 386

13.1.2 Default-Free Term Structure 388

13.1.3 Pre-Default Value of a Corporate Bond 390

13.1.4 Dynamics of Forward Credit Spreads 392

13.1.5 Default Time of a Corporate Bond 394

13.1.6 Case of Zero Recovery 397

13.1.7 Default-Free and Defaultable LIBOR Rates 398

13.1.8 Case of a Non-Zero Recovery Rate 400

13.1.9 Alternative Recovery Rules 403

13.2 HJM Model with Credit Migrations 405

13.2.1 Model's Assumption 405

13.2.2 Migration Process 407

13.2.3 Special Case 408

13.2.4 General Case 410

13.2.5 Alternative Recovery Schemes 413

13.2.6 Defaultable Coupon Bonds 415

13.2.7 Default Correlations 416

13.2.8 Market Prices of Interest Rate and Credit Risk 417

13.3 Applications to Credit Derivatives 421

13.3.1 Valuation of Credit Derivatives 421

13.3.2 Hedging of Credit Derivatives 422

14.Defaultable Market Rates 423

14.1 Interest Rate Contracts with Default Risk 424

14.1.1 Default-Free LIBOR and Swap Rates 424

14.1.2 Defaultable Spot LIBOR Rates 426

14.1.3 Defaultable Spot Swap Rates 427

14.1.4 FRAs with Unilateral Default Risk 428

14.1.5 Forward Swaps with Unilateral Default Risk 432

14.2 Multi-Period IRAs with Unilateral Default Risk 434

14.3 Multi-Period Defaultable Forward Nominal Rates 438

14.4 Defaultable Swaps with Unilateral Default Risk 441

14.4.1 Settlement of the 1st Kind 442

14.4.2 Settlement of the 2nd Kind 444

14.4.3 Settlement of the 3rd Kind 445

14.4.4 Market Conventions 446

14.5 Defaultable Swaps with Bilateral Default Risk 447

14.6 Defaultable Forward Swap Rates 449

14.6.1 Forward Swaps with Unilateral Default Risk 449

14.6.2 Forward Swaps with Bilateral Default Risk 450

15.Modeling of Market Rates 451

15.1 Models of Default-Free Market Rates 452

15.1.1 Modeling of Forward LIBOR Rates 452

15.1.2 Modeling of Forward Swap Rates 458

15.2 Modeling of Defaultable Forward LIBOR Rates 465

15.2.1 Lotz and Schl?gl Approach 465

15.2.2 Sch?nbucher's Approach 469

References 479

Basic Notation 495

Subject Index 497

返回顶部