当前位置:首页 > 工业技术
计算代数数值论教程 A Course in Computational Algebraic Number Theory
计算代数数值论教程 A Course in Computational Algebraic Number Theory

计算代数数值论教程 A Course in Computational Algebraic Number TheoryPDF电子书下载

工业技术

  • 电子书积分:16 积分如何计算积分?
  • 作 者:(美)Cohen,H.著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:1997
  • ISBN:750623310X
  • 页数:548 页
图书介绍:
《计算代数数值论教程 A Course in Computational Algebraic Number Theory》目录

Chapter 1 Fundamental Number-Theoretic Algorithms 1

1.1 Introduction 1

1.1.1 Algorithms 1

1.1.2 Multi-precision 2

1.1.3 Base Fields and Rings 5

1.1.4 Notations 6

1.2 The Powering Algorithms 8

1.3 Euclid's Algorithms 12

1.3.1 Euclid's and Lehmer's Algorithms 12

1.3.2 Euclid's Extended Algorithms 16

1.3.3 The Chinese Remainder Theorem 19

1.3.4 Continued Fraction Expansions of Real Numbers 21

1.4 The Legendre Symbol 24

1.4.1 The Groups(Z/nZ) 24

1.4.2 The Legendre-Jacobi-Kronecker Symbol 27

1.5 Computing Square Roots Modulo p 31

1.5.1 The Algorithm of Tonelli and Shanks 32

1.5.2 The Algorithm of Cornacchia 34

1.6 Solving Polynomial Equations Modulo p 36

1.7 Power Detection 38

1.7.1 Integer Square Roots 38

1.7.2 Square Detection 39

1.7.3 Prime Power Detection 41

1.8 Exercises for Chapter 1 42

Chapter 2 Algorithms for Linear Algebra and Lattices 46

2.1 Introduction 46

2.2 Linear Algebra Algorithms on Square Matrices 47

2.2.1 Generalities on Linear Algebra Algorithms 47

2.2.2 Gaussian Elimination and Solving Linear Systems 48

2.2.3 Computing Determinants 50

2.2.4 Computing the Characteristic Polynomial 53

2.3 Linear Algebra on General Matrices 57

2.3.1 Kernel and Image 57

2.3.2 Inverse Image and Supplement 60

2.3.3 Operations on Subspaces 62

2.3.4 Remarks on Modules 64

2.4 Z-Modules and the Hermite and Smith Normal Forms 66

2.4.1 Introduction to Z-Modules 66

2.4.2 The Hermite Normal Form 67

2.4.3 Applications of the Hermite Normal Form 73

2.4.4 The Smith Normal Form and Applications 75

2.5 Generalities on Lattices 79

2.5.1 Lattices and Quadratic Forms 79

2.5.2 The Gram-Schmidt Orthogonalization Procedure 82

2.6 Lattice Reduction Algorithms 84

2.6.1 The LLL Algorithm 84

2.6.2 The LLL Algorithm with Deep Insertions 90

2.6.3 The Integral LLL Algorithm 92

2.6.4 LLL Algorithms for Linearly Dependent Vectors 95

2.7 Applications of the LLL Algorithm 97

2.7.1 Computing the Integer Kernel and Image of a Matrix 97

2.7.2 Linear and Algebraic Dependence Using LLL 100

2.7.3 Finding Small Vectors in Lattices 103

2.8 Exercises for Chapter 2 106

Chapter 3 Algorithms on Polynomials 109

3.1 Basic Algorithms 109

3.1.1 Representation of Polynomials 109

3.1.2 Multiplication of Polynomials 110

3.1.3 Division of Polynomials 111

3.2 Euclid's Algorithms for Polynomials 113

3.2.1 Polynomials over a Field 113

3.2.2 Unique Factorization Domains (UFD's) 114

3.2.3 Polynomials over Unique Factorization Domains 116

3.2.4 Euclid's Algorithm for Polynomials over a UFD 117

3.3 The Sub-Resultant Algorithm 118

3.3.1 Description of the Algorithm 118

3.3.2 Resultants and Discriminants 119

3.3.3 Resultants over a Non-Exact Domain 123

3.4 Factorization of Polynomials Modulo p 124

3.4.1 General Strategy 124

3.4.2 Squarefree Factorization 125

3.4.3 Distinct Degree Factorization 126

3.4.4 Final Splitting 127

3.5 Factorization of Polynomials over Z or Q 133

3.5.1 Bounds on Polynomial Factors 134

3.5.2 A First Approach to Factoring over Z 135

3.5.3 Factorization Modulo pe:Hensel's Lemma 137

3.5.4 Factorization of Polynomials over Z 139

3.5.5 Discussion 141

3.6 Additional Polynomial Algorithms 142

3.6.1 Modular Methods for Computing GCD's in Z[X] 142

3.6.2 Factorization of Polynomials over a Number Field 143

3.6.3 A Root Finding Algorithm over C 146

3.7 Exercises for Chapter 3 148

Chapter 4 Algorithms for Algebraic Number Theory I 153

4.1 Algebraic Numbers and Number Fields 153

4.1.1 Basic Definitions and Properties of Algebraic Numbers 153

4.1.2 Number Fields 154

4.2 Representation and Operations on Algebraic Numbers 158

4.2.1 Algebraic Numbers as Roots of their Minimal Polynomial 158

4.2.2 The Standard Representation of an Algebraic Number 159

4.2.3 The Matrix(or Regular) Representation of an Algebraic Number 160

4.2.4 The Conjugate Vector Representation of an Algebraic Number 161

4.3 Trace,Norm and Characteristic Polynomial 162

4.4 Discriminants,Integral Bases and Polynomial Reduction 165

4.4.1 Discriminants and Integral Bases 165

4.4.2 The Polynomial Reduction Algorithm 168

4.5 The Subfield Problem and Applications 174

4.5.1 The Subfield Problem Using the LLL Algorithm 174

4.5.2 The Subfield Problem Using Linear Algebra over C 175

4.5.3 The Subfield Problem Using Algebraic Algorithms 177

4.5.4 Applications of the Solutions to the Subfield Problem 179

4.6 Orders and Ideals 181

4.6.1 Basic Definitions 181

4.6.2 Ideals of Zk 186

4.7 Representation of Modules and Ideal 188

4.7.1 Modules and the Hermite Normal Form 188

4.7.2 Representation of Ideals 190

4.8 Decomposition of Prime Numbers I 196

4.8.1 Definitions and Main Results 196

4.8.2 A Simple Algorithm for the Decomposition of Primes 199

4.8.3 Computing Valuations 201

4.8.4 Ideal Inversion and the Different 204

4.9 Units and Ideal Classes 207

4.9.1 The Class Group 207

4.9.2 Units and the Regulator 209

4.9.3 Conclusion:the Main Computational Tasks of Algebraic Number Theory 217

4.10 Exercises for Chapter 4 217

Chapter 5 Algorithms for Quadratic Fields 223

5.1 Discriminant,Integral Basis and Decomposition of Primes 223

5.2 Ideals and Quadratic Forms 225

5.3 Class Numbers of Imaginary Quadratic Fields 231

5.3.1 Computing Class Numbers Using Reduced Forms 231

5.3.2 Computing Class Numbers Using Modular Forms 234

5.3.3 Computing Class Numbers Using Analytic Formulas 237

5.4 Class Groups of Imaginary Quadratic Fields 240

5.4.1 Shanks's Baby Step Giant Step Method 240

5.4.2 Reduction and Composition of Quadratic Forms 243

5.4.3 Class Groups Using Shanks's Method 250

5.5 McCurley's Sub-exponential Algorithm 252

5.5.1 Outline of the Algorithm 252

5.5.2 Detailed Description of the Algorithm 255

5.5.3 Atkin's Variant 260

5.6 Class Groups of Real Quadratic Fields 262

5.6.1 Computing Class Numbers Using Reduced Forms 262

5.6.2 Computing Class Numbers Using Analytic Formulas 266

5.6.3 A Heuristic Method of Shahks 268

5.7 Computation of the Fundamental Unit and of the Regulator 269

5.7.1 Description of the Algorithms 269

5.7.2 Analysis of the Continued Fraction Algorithm 271

5.7.3 Computation of the Regulator 278

5.8 The Infrastructure Method of Shanks 279

5.8.1 The Distance Function 279

5.8.2 Description of the Algorithm 283

5.8.3 Compact Representation of the Fundamental Unit 285

5.8.4 Other Application and Generalization of the Distance Function 287

5.9 Buchmann's Sub-exponential Algorithm 288

5.9.1 Outline of the Algorithm 289

5.9.2 Detailed Description of Buchmann's Sub-exponential Algorithm 291

5.10 The Cohen-Lenstra Heuristics 295

5.10.1 Results and Heuristics for Imaginary Quadratic Fields 295

5.10.2 Results and Heuristics for Real Quadratic Fields 297

5.11 Exercises for Chapter 5 298

Chapter 6 Algorithms for Algebraic Number Theory II 303

6.1 Computing the Maximal Order 303

6.1.1 The Pohst-Zassenhaus Theorem 303

6 1.2 The Dedekind Criterion 305

6.1.3 Outline of the Round 2 Algorithm 308

6.1.4 Detailed Description of the Round 2 Algorithm 311

6.2 Decomposition of Prime Numbers II 312

6.2.1 Newton Polygons 313

6.2.2 Theoretical Description of the Buchmann-Lenstra Method 315

6.2.3 Multiplying and Dividing Ideals Modulo p 317

6.2 4 Splitting of Separable Algebras over Fp 318

6.2.5 Detailed Description of the Algorithm for Prime Decomposition 320

6.3 Computing Galois Groups 322

6.3.1 The Resolvent Method 322

6.3.2 Degree3 325

6.3.3 Degree4 325

6.3.4 Degree5 328

6.3.5 Degree6 329

6.3.6 Degree7 331

6.3.7 A List of Test Polynomials 333

6.4 Examples of Families of Number Fields 334

6.4.1 Making Tables of Number Fields 334

6.4.2 Cyclic Cubic Fields 336

6.4.3 Pure Cubic Fields 343

6.4.4 Decomposition of Primes in Pure Cubic Fields 347

6.4.5 General Cubic Fields 351

6.5 Computing the Class Group,Regulator and Fundamental Units 352

6.5.1 Ideal Reduction 352

6.5.2 Computing the Relation Matrix 354

6.5.3 Computing the Regulator and a System of Fundamental Units 357

6.5.4 The General Class Group and Unit Algorithm 358

6.5.5 The Principal Ideal Problem 360

6.6 Exercises for Chapter 6 362

Chapter 7 Introduction to Elliptic Curves 367

7.1 Basic Definitions 367

7.1.1 Introduction 367

7.1.2 Elliptic Integrals and Elliptic Functions 367

7.1.3 Elliptic Curves over a Field 369

7.1.4 Points on Elliptic Curves 372

7.2 Complex Multiplication and Class Numbers 376

7.2.1 Maps Between Complex Elliptic Curves 377

7.2.2 Isogenies 379

7.2.3 Complex Multiplication 381

7.2.4 Complex Multiplication and Hilbert Class Fields 384

7.2.5 Modular Equations 385

7.3 Rank and L-functions 386

7.3.1 The Zeta Function of a Variety 387

7.3.2 L-functions of Elliptic Curves 388

7.3.3 The Taniyama-Weil Conjecture 390

7.3.4 The Birch and Swinnerton-Dyer Conjecture 392

7.4 Algorithms for Elliptic Curves 394

7.4.1 Algorithms for Elliptic Curves over C 394

7.4.2 Algorithm for Reducing a General Cubic 399

7.4.3 Algorithms for Elliptic Curves over Fp 403

7.5 Algorithms for Elliptic Curves over Q 406

7.5.1 Tate's algorithm 406

7.5.2 Computing rational points 410

7.5.3 Algorithms for computing the L-function 413

7.6 Algorithms for Elliptic Curves with Complex Multiplication 414

7.6.1 Computing the Complex Values of j(r) 414

7.6.2 Computing the Hilbert Class Polynomials 415

7.6.3 Computing Weber Class Polynomials 416

7.7 Exercises for Chapter 7 417

Chapter 8 Factoring in the Dark Ages 419

8.1 Factoring and Primality Testing 419

8.2 Compositeness Tests 421

8.3 Primality Tests 423

8.3.1 The Pocklington-Lehmer N-1 Test 423

8.3.2 Briefly,Other Tests 424

8.4 Lehman's Method 425

8.5 Pollard's p Method 426

8.5.1 Outline of the Method 426

8.5.2 Methods for Detecting Periodicity 427

8.5.3 Brent's Modified Algorithm 429

8.5.4 Analysis of the Algorithm 430

8.6 Shanks's Class Group Method 433

8.7 Shanks's SQUFOF 434

8.8 The p-1-method 438

8.8.1 The First Stage 439

8.8.2 The Second Stage 440

8.8.3 Other Algorithms of the Same Type 441

8.9 Exercises for Chapter 8 442

Chapter 9 Modern Primality Tests 445

9.1 The Jacobi Sum Test 446

9.1.1 Group Rings of Cyclotomic Extensions 446

9.1.2 Characters,Gauss Sums and Jacobi Sums 448

9.1.3 The Basic Test 450

9.1.4 Checking Condition?p 455

9.1.5 The Use of Jacobi Sums 457

9.1.6 Detailed Description of the Algorithm 463

9.1.7 Discussion 465

9.2 The Elliptic Curve Test 467

9.2.1 The Goldwasser-Kilian Test 467

9.2.2 Atkin's Test 471

9.3 Exercises for Chapter 9 475

Chapter 10 Modern Factoring Methods 477

10.1 The Continued Fraction Method 477

10.2 The Class Group Method 481

10.2.1 Sketch of the Method 481

10.2.2 The Schnorr-Lenstra Factoring Method 482

10.3 The Elliptic Curve Method 484

10.3.1 Sketch of the Method 484

10.3.2 Elliptic Curves Modulo N 485

10.3.3 The ECM Factoring Method of Lenstra 487

10.3.4 Practical Considerations 489

10.4 The Multiple Polynomial Quadratic Sieve 490

10.4.1 The Basic Quadratic Sieve Algorithm 491

10.4.2 The Multiple Polynomisl Quadratic Sieve 492

10.4.3 Improvements to the MPQS Algorithm 494

10.5 The Number Field Sieve 495

10.5.1 Introduction 495

10.5.2 Description of the Special NFS when h(K)=1 496

10.5.3 Description of the Special NFS when h(K)>1 500

10.5.4 Description of the General NFS 501

10.5.5 Miscellaneous Improvements to the Number Field Sieve 503

10.6 Exercises for Chapter 10 504

Appendix A Packages for Number Theory 507

Appendix B Some Useful Tables 513

B.1 Table of Class Numbers of Complex Quadratic Fields 513

B.2 Table of Class Numbers and Units of Real Quadratic Fields 515

B.3 Table of Class Numbers and Units of Complex Cubic Fields 519

B.4 Table of Class Numbers and Units of Totally Real Cubic Fields 521

B.5 Table of Elliptic Curves 524

Bibliography 527

Index 540

返回顶部