当前位置:首页 > 数理化
代数配边理论
代数配边理论

代数配边理论PDF电子书下载

数理化

  • 电子书积分:10 积分如何计算积分?
  • 作 者:(美)莱文(Levine.M)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2013
  • ISBN:9787510070297
  • 页数:246 页
图书介绍:本书是一部很难得的介绍代数配边理论的专著,内容精炼简短。书中在讲述了Quillen复配边方法后,接着在固定域的光滑变量范畴上引进有向上同调理论的观点,证明了这样一个理论—范的存在性叫做代数配边。书中也包括了一些计算和应用案例。读者对象:数学专业的研究生和科研人员。
《代数配边理论》目录
标签:代数 理论

1 Cobordism and oriented cohomology 1

1.1 Oriented cohomology theories 1

1.2 Algebraic cobordism 6

1.3 Relations with complex cobordism 13

2 The definition of algebraic cobordism 17

2.1 Oriented Borel-Moore functors 17

2.2 Oriented functors of geometric type 26

2.3 Some elementary properties 29

2.4 The construction of algebraic cobordism 35

2.5 Some computations in algebraic cobordism 40

3 Fundamental properties of algebraic cobordism 51

3.1 Divisor classes 51

3.2 Localization 55

3.3 Transversality 66

3.4 Homotopy invariance 75

3.5 The projective bundle formula 77

3.6 The extended homotopy property 80

4 Algebraic cobordism and the Lazard ring 83

4.1 Weak homology and Chern classes 83

4.2 Algebraic cobordism and K-theory 105

4.3 The cobordism ring of a point 116

4.4 Degree formulas 122

4.5 Comparison with the Chow groups 136

5 Oriented Borel-Moore homology 141

5.1 Oriented Borel-Moore homology theories 141

5.2 Other oriented theories 149

返回顶部