PROBABILITY AND STOCHASTIC PROCESSESEPDF电子书下载
- 电子书积分:12 积分如何计算积分?
- 作 者:张丽华,周清主编
- 出 版 社:北京:北京邮电大学出版社
- 出版年份:2016
- ISBN:9787563545377
- 页数:324 页
Chapter 1 Events and Their Probabilities 1
1.1 The History of Probability 1
1.2 Experiment,Sample Space and Random Event 3
1.2.1 Basic Definitions 3
1.2.2 Events as Sets 5
1.3 Probabilities Defined on Events 8
1.3.1 Classical Probability 8
1.3.2 Geometric Probability 13
1.3.3 The Frequency Interpretation of Probability 16
1.4 Probability Space 18
1.4.1 Axiomatic Definition of Probability 19
1.4.2 Properties of Probability 20
1.5 Conditional Probabilities 24
1.5.1 The Definition of Conditional Probability 24
1.5.2 The Multiplication Rule 28
1.5.3 Total Probability Formula 29
1.5.4 Bayes'Theorem 32
1.6 Independence of Events 36
1.6.1 Independence of Two Events 36
1.6.2 Independence of Several Events 40
1.6.3 Bernoulli Trials 43
1.7 Review 44
1.8 Exereises 45
Chapter 2 Random Variable 54
2.1 The Definition of a Random Variable 54
2.2 The Distribution Function of a Random Variable 56
2.2.1 The Definition and Properties of Distribution Function 57
2.2.2 The Distribution Function of Function of a Random Variable 67
2.3 Mathematical Expectation and Variance 71
2.3.1 Expectation of a Random Variable 71
2.3.2 Expectation of Functions of a Random Variable 77
2.3.3 Variance of a Random Variable 80
2.3.4 The Application of Expectation and Variation 85
2.4 Discrete Random Variables 87
2.4.1 Binomial Distribution with Parameters n and p 87
2.4.2 Geometric Distribution 92
2.4.3 Poisson Distribution with Parameters λ 95
2.5 Continuous Random Variables 98
2.5.1 Uniform Distribution 98
2.5.2 Exponential Distribution 102
2.5.3 Normal Distribution 107
2.6 Review 114
2.7 Exercises 117
Chapter 3 Random Vectors 126
3.1 Random Vectors and Joint Distributions 126
3.1.1 Random Vectors and Joint Distributions 127
3.1.2 Discrete Random Vectors 129
3.1.3 Continuous Random Vectors 134
3.2 Independence of Random Variables 141
3.3 Conditional Distributions 148
3.3.1 Discrete Case 148
3.3.2 Continuous Case 150
3.4 One Function of Two Random Variables 153
3.4.1 Discrete Case 153
3.4.2 Continuous case 157
3.5 Transformation of Two Random Variables 164
3.6 Numerical Characteristics of Random Vectors 167
3.6.1 Expectation of Sums and Products 167
3.6.2 Covariance and Correlation 171
3.7 Multivariate Distributions 178
3.7.1 Distribution Functions of Multiple Random Vectors 178
3.7.2 Numerical Characteristics of Random Vectors 181
3.7.3 Multiple Normal Distribution 186
3.8 Review 188
3.9 Exercises 191
Chapter 4 Sequences of Random Variables 200
4.1 Family of Distribution Functions and Numerical Characteristics 201
4.2 Modes of Convergence 204
4.3 The Law of Large Numbers 207
4.4 The Central Limit Theorem 210
4.5 Review 213
4.6 Exercises 214
Chapter 5 Introduction to Stochastic Processes 218
5.1 Definition and Classification 218
5.2 The Distribution Family and the Moment Functions 222
5.3 The Moments of the Stochastic Processes 223
5.3.1 Mean.Autocorrelation and Autocovariance 223
5.3.2 Cross-correlation and Cross-covariance 227
5.4 Stochastic Analysis 228
5.5 Review 231
5.6 Exercises 231
Chapter 6 Stationary Processes 233
6.1 Stationary Processes 233
6.1.1 Strict Stationary Processes 233
6.1.2 Wide Stationary Processes 235
6.1.3 Joint Stationary Processes 239
6.2 Ergodicity of Stationary Processes 241
6.3 Power Spectral Density of Stationary Processes 245
6.3.1 Average Power and Power Spectral Density 245
6.3.2 Power Spectral Density and Autocorrelation Function 248
6.3.3 Cross-Power Spectral Density 251
6.4 Stationary Processes and Linear Systems 253
6.5 Review 258
6.6 Exercises 259
Chapter 7 Finite Markov Chains 262
7.1 Basic Concepts 262
7.2 Markov Chains Having Two States 267
7.3 Higher Order Transition Probabilities and Distributions 272
7.4 Invariant Distributions and Ergodic Markov Chain 279
7.5 How Does Google Work? 285
7.6 Review 289
7.7 Exercises 290
Chapter 8 Independent-Increment Processes 296
8.1 Independent-Increment Processes 296
8.2 Poisson Process 297
8.3 Gaussian Processes 304
8.4 Brownian Motion and Wiener Processes 307
8.5 Review 310
8.6 Exercises 311
Bibliography 315
Appendix 317
Table of Binomial Cofficients 317
Table of Binomial Probabilities 318
Table of Poisson Probabilities 320
Table of Normal Probabilities 323
- 《翦伯赞全集 第10卷 中外历史年表 主编》翦伯赞著 2008
- 《郑杭生主编《社会学概论新修》学习笔记与课后题详解 第4版》郑杭生主编;杨敏,王道勇副主编 2014
- 《社长总编辑 主编 论出版 第4辑》新闻出版署教育培训中心编 2000
- 《专业技术人员创新团队建设读本 主编 靳永慧 甄亚丽 张彦明》靳永慧,甄亚丽,张彦明主编 2012
- 《许国璋主编《英语》单词科学记忆法》李平武主编 1989
- 《柑桔手册 贺善文主编》贺善文主编 1988
- 《北京审计学会主编怎样查帐和调帐》刘大贤,傅磊 1990
- 《许国璋主编 英语自学手册 第3册》石孝殊主编 1985
- 《许国璋主编《英语》自学辅导 上》罗长炎,邢文军编 1986
- 《许国璋主编英语第1册 1979年重印本 练习答案》赵厚宪编 1982
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019