当前位置:首页 > 数理化
凝聚态物质
凝聚态物质

凝聚态物质PDF电子书下载

数理化

  • 电子书积分:17 积分如何计算积分?
  • 作 者:(美)马汉(MahanG.D.)著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2013
  • ISBN:7510058387
  • 页数:574 页
图书介绍:
《凝聚态物质》目录

1 Introduction 1

1.1 1900-1910 1

1.2 Crystal Growth 2

1.3 Materials by Design 4

1.4 Artificial Structures 5

2 Crystal Structures 9

2.1 Lattice Vectors 9

2.2 Reciprocal Lattice Vectors 11

2.3 Two Dimensions 13

2.4 Three Dimensions 15

2.5 Compounds 19

2.6 Measuring Crystal Structures 21

2.6.1 X-ray Scattering 22

2.6.2 Electron Scattering 23

2.6.3 Neutron Scattering 23

2.7 Structure Factor 25

2.8 EXAFS 26

2.9 Optical Lattices 28

3 Energy Bands 31

3.1 Bloch's Theorem 31

3.1.1 Floquet's Theorem 32

3.2 Nearly Free Electron Bands 36

3.2.1 Periodic Potentials 36

3.3 Tight-binding Bands 38

3.3.1 s-State Bands 38

3.3.2 p-State Bands 41

3.3.3 Wannier Functions 43

3.4 Semiconductor Energy Bands 44

3.4.1 What Is a Semiconductor? 44

3.4.2 Si,Ge,GaAs 47

3.4.3 HgTe and CdTe 50

3.4.4 k·p Theory 51

3.4.5 Electron Velocity 55

3.5 Density of States 55

3.5.1 Dynamical Mean Field Theory 58

3.6 Pseudopotentials 60

3.7 Measurement of Energy Bands 62

3.7.1 Cyclotron Resonance 62

3.7.2 Synchrotron Band Mapping 63

4 Insulators 68

4.1 Rare Gas Solids 68

4.2 Ionic Crystals 69

4.2.1 Madelung energy 71

4.2.2 Polarization Interactions 72

4.2.3 Van der Waals Interaction 75

4.2.4 Ionic Radii 75

4.2.5 Repulsive Energy 76

4.2.6 Phonons 77

4.3 Dielectric Screening 78

4.3.1 Dielectric Function 78

4.3.2 Polarizabilities 80

4.4 Ferroelectrics 82

4.4.1 Microscopic Theory 83

4.4.2 Thermodynamics 87

4.4.3 SrTiO3 89

4.4.4 BaTiO3 91

5 Free Electron Metals 94

5.1 Introduction 94

5.2 Free Electrons 96

5.2.1 Electron Density 96

5.2.2 Density of States 97

5.2.3 Nonzero Temperatures 98

5.2.4 Two Dimensions 101

5.2.5 Fermi Surfaces 102

5.2.6 Thermionic Emission 104

5.3 Magnetic Fields 105

5.3.1 Integer Quantum Hall Effect 107

5.3.2 Fractional Quantum Hall Effect 110

5.3.3 Composite Fermions 113

5.3.4 deHaas-van Alphen Effect 113

5.4 Quantization of Orbits 117

5.4.1 Cyclotron Resonance 119

6 Electron-Electron Interactions 127

6.1 Second Quantization 128

6.1.1 Tight-binding Models 131

6.1.2 Nearly Free Electrons 131

6.1.3 Hartree Energy:Wigner-Seitz 134

6.1.4 Exchange Energy 136

6.1.5 Compressibility 138

6.2 Density Operator 141

6.2.1 Two Theorems 142

6.2.2 Equations of Morion 143

6.2.3 Plasma Oscillations 144

6.2.4 Exchange Hole 146

6.3 Density Functional Theory 148

6.3.1 Functional Denvatives 149

6.3.2 Kinetic Energy 150

6.3.3 Kohn-Sham Equations 151

6.3.4 Exchange and Correlation 152

6.3.5 Application to Atoms 154

6.3.6 Time-dependent Local Density Approximation 155

6.3.7 TDLDA in Solids 157

6.4 Dielectric Function 158

6.4.1 Random Phase Approximation 159

6.4.2 Properties of P(q,ω) 161

6.4.3 Hubbard-Singwi Dielectric Functions 164

6.5 Impurities in Metals 165

6.5.1 Friedel Analysis 166

6.5.2 RKKY Interaction 170

7 Phonons 176

7.1 Phonon Dispersion 176

7.1.1 Spring Constants 177

7.1.2 Example:Square Lattice 179

7.1.3 Polar Crystals 181

7.1.4 Phonons 181

7.1.5 Dielectric Function 185

7.2 Phonon Operators 187

7.2.1 Simple Harmonic Oscillator 187

7.2.2 Phonons in One Dimension 189

7.2.3 Binary Chain 192

7.3 Phonon Density of States 195

7.3.1 Phonon Heat Capacity 197

7.3.2 Isotopes 199

7.4 Local Modes 203

7.5 Elasticity 205

7.5.1 Stress and Strain 205

7.5.2 Isotropic Materials 208

7.5.3 Boundary Conditions 210

7.5.4 Defect Interactions 211

7.5.5 Piezoelectricity 214

7.5.6 Phonon Focusing 215

7.6 Thermal Expansion 216

7.7 Debye-Waller Factor 217

7.8 Solitons 220

7.8.1 Solitary Waves 220

7.8.2 Cnoidal Functions 222

7.8.3 Periodic Solutions 223

8 Boson Systems 230

8.1 Second Quantization 230

8.2 Superfluidity 232

8.2.1 Bose-Einstein Condensation 232

8.2.2 Bogoliubov Theory of Superfluidity 234

8.2.3 Off-diagonal Long-range Order 240

8.3 Spin Waves 244

8.3.1 Jordan-Wigner Transformation 245

8.3.2 Holstein-Primakoff Transformation 247

8.3.3 Heisenberg Model 248

9 Electron-Phonon Interactions 254

9.1 Semiconductors and Insulators 254

9.1.1 Deformation Potentials 255

9.1.2 Fr?hlich Interaction 257

9.1.3 Piezoelectric Interaction 258

9.1.4 Tight-binding Models 259

9.1.5 Electron Self-energies 260

9.2 Electron-Phonon Interaction in Metals 263

9.2.1 λ 264

9.2.2 Phonon Frequencies 267

9.2.3 Electron-Phonon Mass Enhancement 268

9.3 Peierls Transition 272

9.4 Phonon-mediated Interactions 276

9.4.1 Fixed Electrons 276

9.4.2 Dynamical Phonon Exchange 278

9.5 Electron-Phonon Efiects at Defects 281

9.5.1 F-Centers 281

9.5.2 Jahn-Teller Effect 284

10 Extrinsic Semiconductors 287

10.1 Introduction 287

10.1.1 Impurities and Defects in Silicon 288

10.1.2 Donors 289

10.1.3 Statistical Mechanics of Defects 292

10.1.4 n-p Product 294

10.1.5 Chemical Potential 295

10.1.6 Schottky Barriers 297

10.2 Localization 301

10.2.1 Mott Localization 301

10.2.2 Anderson Localization 304

10.2.3 Weak Localization 304

10.2.4 Percolation 306

10.3 Variable Range Hopping 310

10.4 Mobility Edge 311

10.5 Band Gap Narrowing 312

11 Transport Phenomena 320

11.1 Introduction 320

11.2 Drude Theory 321

11.3 Bloch Oscillations 322

11.4 Boltzmann Equation 324

11.5 Currents 327

11.5.1 Transport Coeffcients 327

11.5.2 Metals 329

11.5.3 Semiconductors and Insulators 333

11.6 Impurity Scattering 335

11.6.1 Screened Impurity Scattering 336

11.6.2 T-matrix Description 337

11.6.3 Mooij Correlation 338

11.7 Electron-Phonon Interaction 340

11.7.1 Lifetime 341

11.7.2 Semiconductors 343

11.7.3 Saturation Velocity 344

11.7.4 Metals 347

11.7.5 Temperature Relaxation 348

11.8 Ballistic Transport 350

11.9 Carrier Drag 353

11.10 Electron Tunneling 355

11.10.1 Giaever Tunneling 356

11.10.2 Esaki Diode 358

11.10.3 Schottky Barrier Tunneling 361

11.10.4 Efiective Mass Matching 362

11.11 Phonon Transport 364

11.11.1 Transport in Three Dimensions 364

11.11.2 Minimum Thermal Conductivity 365

11.11.3 Kapitza Resistance 366

11.11.4 Measuring Thermal Conductivity 368

11.12 Thermoelectric Devices 370

11.12.1 Maximum Cooling 371

11.12.2 Refrigerator 373

11.12.3 Power Generation 374

12 Optical Properties 379

12.1 Introduction 379

12.1.1 Optical Functions 379

12.1.2 Kramers-Kronig Analysis 381

12.2 Simple Metals 383

12.2.1 Drude 383

12.3 Force-Force Correlations 385

12.3.1 Impurity Scattering 386

12.3.2 Interband Scattering 388

12.4 Optical Absorption 389

12.4.1 Interband Transitions in Insulators 389

12.4.2 Wannier Excitons 392

12.4.3 Frenkel Excitons 395

12.5 X-Ray Edge Singularity 396

12.6 Photoemission 399

12.7 Conducting Polymers 401

12.8 Polaritons 404

12.8.1 Phonon Polaritons 404

12.8.2 Plasmon Polaritons 405

12.9 Surface Polaritons 406

12.9.1 Surface Plasmons 408

12.9.2 Surface Optical Phonons 410

12.9.3 Surface Charge Density 413

13 Magnetism 418

13.1 Introduction 418

13.2 Simple Magnets 418

13.2.1 Atomic Magnets 418

13.2.2 Hund's Rules 418

13.2.3 Curie's Law 420

13.2.4 Ferromagnetism 422

13.2.5 Antiferromagnetism 423

13.3 3d Metals 424

13.4 Theories of Magnetism 425

13.4.1 Ising and Heisenberg Models 425

13.4.2 Mean Field Theory 427

13.4.3 Landau Theory 431

13.4.4 Critical Phenomena 433

13.5 Magnetic Susceptibility 434

13.6 Ising Model 436

13.6.1 One Dimension 436

13.6.2 Two and three Dimensions 437

13.6.3 Bethe Lattice 439

13.6.4 Order-Disorder Transitions 443

13.6.5 Lattice Gas 445

13.7 Topological Phase Transitions 446

13.7.1 Vortices 447

13.7.2 XY-Model 448

13.8 Kondo Effect 452

13.8.1 sd-Interaction 453

13.8.2 Spin-flip Scattering 454

13.8.3 Kondo Resonance 456

13.9 Hubbard Model 458

13.9.1 U=0 Solution 459

13.9.2 Atomic Limit 460

13.9.3 U>0 460

13.9.4 Half-filling 462

14 Superconductivity 467

14.1 Discovery of Superconductivity 467

14.1.1 Zero resistance 467

14.1.2 Meissner Effect 468

14.1.3 Three Eras of Superconductivity 469

14.2 Theories of Superconductivity 473

14.2.1 London Equation 473

14.2.2 Ginzburg-Landau Theory 475

14.2.3 Type Ⅱ 478

14.3 BCS Theory 479

14.3.1 History of Theory 479

14.3.2 Effective Hamiltonian 480

14.3.3 Pairing States 481

14.3.4 Gap Equation 483

14.3.5 d-Wave Energy Gaps 486

14.3.6 Density of States 487

14.3.7 Ultrasonic Attenuation 489

14.3.8 Meissner Effect 490

14.4 ElectTon Tunneling 492

14.4.1 Normal-Superconductor 494

14.4.2 Superconductor-Superconductor 497

14.4.3 Josephson Tunneling 498

14.4.4 Andreev Tunneling 501

14.4.5 Corner Junctions 502

14.5 Cuprate Superconductors 503

14.5.1 Muon Rotation 503

14.5.2 Magnetic Oscillations 506

14.6 Flux Quantization 507

15 Nanometer Physics 511

15.1 Quantum Wells 512

15.1.1 Lattice Matching 512

15.1.2 Electron States 513

15.1.3 Excitons and Donors in Quantum Wells 515

15.1.4 Modulation Doping 518

15.1.5 Electron Mobility 520

15.2 Graphene 520

15.2.1 Structure 521

15.2.2 Electron Energy Bands 522

15.2.3 Eigenvectors 525

15.2.4 Landau Levels 525

15.2.5 Electron-Phonon Interaction 526

15.2.6 Phonons 528

15.3 Carbon Nanotubes 530

15.3.1 Chirality 530

15.3.2 Electronic States 531

15.3.3 Phonons in Carbon Nanotubes 536

15.3.4 Electrical Resistivity 537

Appendix 541

Index 553

相关图书
作者其它书籍
返回顶部