当前位置:首页 > 天文地球
时空序列数据分析和建模
时空序列数据分析和建模

时空序列数据分析和建模PDF电子书下载

天文地球

  • 电子书积分:8 积分如何计算积分?
  • 作 者:王佳璆,邓敏,程涛,黄健柏著
  • 出 版 社:北京:科学出版社
  • 出版年份:2012
  • ISBN:9787030333414
  • 页数:145 页
图书介绍:随着对地观测技术、计算机技术和网络通信技术的迅速发展,已积累了海量的时空序列数据(如气象数据、交通流数据,环境监测等)。如何有效地分析和建模时空序列数据,构建时空一体化的时空预测模型,对于研究地理时空现象具有十分重要的意义,并已逐渐成为时空数据分析的重要领域之一。本书借鉴时空统计、神经网络、支持向量回归等方法应用于时间序列分析和空间数据分析中的思想,从寻找易用的、准确的、可靠的、实用性强的时空序列建模方法的角度出发,在对时空自相关移动平均模型进行了深入系统研究的基础上,构建了多种新的时空模型,并对模型的性能进行了全面的分析和评估,进而将时空序列模型应用于气象、交通、环境监测等部门,并提供决策支持。
《时空序列数据分析和建模》目录

第1章 绪论 1

1.1时空序列分析建模的发展背景 1

1.2时空序列分析建模的研究概况 2

1.3时空序列分析建模的应用 5

1.4本书的主要研究内容及结构安排 8

1.5本章小结 9

参考文献 9

第2章 时空数据的表达及基本性质 14

2.1地理时空的理解 14

2.2时空数据的表达 15

2.3时空数据的基本性质 16

2.4本章小结 26

参考文献 26

第3章 时空自相关移动平均模型 28

3.1自相关模 28

3.2移动平均模型 30

3.3时间自相关移动平均模型 32

3.4空间/时空自相关移动平均模型 34

3.5实例1——空间面状数据的时空预测 44

3.6实例2——交通路网数据的时空预测 55

3.7本章小结 60

参考文献 61

第4章 时空序列混合框架和模型 62

4.1非平稳时空过程模型方法 62

4.2非平稳时空序列混合建模框架 63

4.3实例——空间点数据的时空预测 69

4.4本章小结 82

参考文献 82

第5章 时空序列神经网络模型 86

5.1神经网络模型 86

5.2时空神经元网络模型 88

5.3网络的结构及工作方式 91

5.4网络的学习方法和算法 93

5.5时空非平稳建模 95

5.6实例1——空间面状数据的时空预测 98

5.7实例2——空间点数据的时空预测 104

5.8本章小结 110

参考文献 110

第6章 时空序列支持向量相关模型 112

6.1机器学习概论 112

6.2统计学习理论 114

6.3支持向量机的发展及应用 116

6.4多输出支持向量相关算法 117

6.5构造时空核函数 122

6.6实例1——空间面状数据的时空预测 126

6.7实例2——空间点数据的时空预测 131

6.8本章小结 135

参考文献 135

第7章 总结与展望 137

7.1模型比较及讨论 137

7.2主要研究结论 138

7.3研究展望 140

附录194个国际气象交换站描述性统计表 141

相关图书
作者其它书籍
返回顶部