当前位置:首页 > 数理化
应用数值线性代数  英文影印版
应用数值线性代数  英文影印版

应用数值线性代数 英文影印版PDF电子书下载

数理化

  • 电子书积分:14 积分如何计算积分?
  • 作 者:(美)戴梅尔著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2011
  • ISBN:9787302245001
  • 页数:423 页
图书介绍:本书讲述应用数值线性代数中的重要理论基础。
《应用数值线性代数 英文影印版》目录

1 Introduction 1

1.1 Basic Notation 1

1.2 Standard Problems of Numerical Linear Algebra 1

1.3 General Techniques 2

1.3.1 Matrix Factorizations 3

1.3.2 Perturbation Theory and Condition Numbers 4

1.3.3 Effects of Roundoff Error on Algorithms 5

1.3.4 Analyzing the Speed of Algorithms 5

1.3.5 Engineering Numerical Software 6

1.4 Example:Polynomial Evaluation 7

1.5 Floating Point Arithmetic 9

1.5.1 Further Details 12

1.6 Polynomial Evaluation Revisited 15

1.7 Vector and Matrix Norms 19

1.8 References and Other Topics for Chapter 1 23

1.9 Questions for Chapter 1 24

2 Linear Equation Solving 31

2.1 Introduction 31

2.2 Perturbation Theory 32

2.2.1 Relative Perturbation Theory 35

2.3 Gaussian Elimination 38

2.4 Error Analysis 44

2.4.1 The Need for Pivoting 45

2.4.2 Formal Error Analysis of Gaussian Elimination 46

2.4.3 Estimating Condition Numbers 50

2.4.4 Practical Error Bounds 54

2.5 Improving the Accuracy of a Solution 60

2.5.1 Single Precision Iterative Refinement 62

2.5.2 Equilibration 62

2.6 Blocking Algorithms for Higher Performance 63

2.6.1 Basic Linear Algebra Subroutines(BLAS) 66

2.6.2 How to Optimize Matrix Multiplication 67

2.6.3 Reorganizing Gaussian Elimination to Use Level 3 BLAS 72

2.6.4 More About Parallelism and Other Performance Issues 75

2.7 Special Linear Systems 76

2.7.1 Real Symmetric Positive Definite Matrices 76

2.7.2 Symmetric Indefinite Matrices 79

2.7.3 Band Matrices 79

2.7.4 General Sparse Matrices 83

2.7.5 Dense Matrices Depending on Fewer Than O(n2)Pa-rameters 90

2.8 References and Other Topics for Chapter 2 93

2.9 Questions for Chapter 2 93

3 Linear Least Squares Problems 101

3.1 Introduction 101

3.2 Matrix Factorizations That Solve the Linear Least Squares Prob-lem 105

3.2.1 Normal Equations 106

3.2.2 QR Decomposition 107

3.2.3 Singular Value Decomposition 109

3.3 Perturbation Theory for the Least Squares Problem 117

3.4 Orthogonal Matrices 118

3.4.1 Householder Transformations 119

3.4.2 Givens Rotations 121

3.4.3 Roundoff Error Analysis for Orthogonal Matrices 123

3.4.4 Why Orthogonal Matrices? 124

3.5 Rank-Deficient Least Squares Problems 125

3.5.1 Solving Rank-Deficient Least Squares Problems Using the SVD 128

3.5.2 Solving Rank-Deficient Least Squares Problems Using QR with Pivoting 130

3.6 Performance Comparison of Methods for Solving Least Squares Problems 132

3.7 References and Other Topics for Chapter 3 134

3.8 Questions for Chapter 3 134

4 Nonsymmetric Eigenvalue Problems 139

4.1 Introduction 139

4.2 Canonical Forms 140

4.2.1 Computing Eigenvectors from the Schur Form 148

4.3 Perturbation Theory 148

4.4 Algorithms for the Nonsymmetric Eigenproblem 153

4.4.1 Power Method 154

4.4.2 Inverse Iteration 155

4.4.3 Orthogonal Iteration 156

4.4.4 QR Iteration 159

4.4.5 Making QR Iteration Practical 163

4.4.6 Hessenberg Reduction 164

4.4.7 Tridiagonal and Bidiagonal Reduction 166

4.4.8 QR Iteration with Implicit Shifts 167

4.5 Other Nonsymmetric Eigenvalue Problems 173

4.5.1 Regular Matrix Pencils and Weierstrass Canonical Form 173

4.5.2 Singular Matrix Pencils and the Kronecker Canonical Form 180

4.5.3 Nonlinear Eigenvalue Problems 183

4.6 Summary 184

4.7 References and Other Topics for Chapter 4 187

4.8 Questions for Chapter 4 187

5 The Symmetric Eigenproblem and Singular Value Decompo-sition 195

5.1 Introduction 195

5.2 Perturbation Theory 197

5.2.1 Relative Perturbation Theory 207

5.3 Algorithms for the Symmetric Eigenproblem 210

5.3.1 Tridiagonal QR Iteration 212

5.3.2 Rayleigh Quotient Iteration 214

5.3.3 Divide-and-Conquer 216

5.3.4 Bisection and Inverse Iteration 228

5.3.5 Jacobi's Method 232

5.3.6 Performance Comparison 235

5.4 Algorithms for the Singular Value Decomposition 237

5.4.1 QR Iteration and Its Variations for the Bidiagonal SVD 242

5.4.2 Computing the Bidiagonal SVD to High Relative Accuracy 245

5.4.3 Jacobi's Method for the SVD 248

5.5 Differential Equations and Eigenvalue Problems 254

5.5.1 The Toda Lattice 255

5.5.2 The Connection to Partial Differential Equations 259

5.6 References and Other Topics for Chapter 5 260

5.7 Questions for Chapter 5 260

6 Iterative Methods for Linear Systems 265

6.1 Introduction 265

6.2 On-line Help for Iterative Methods 266

6.3 Poisson's Equation 267

6.3.1 Poisson's Equation in One Dimension 267

6.3.2 Poisson's Equation in Two Dimensions 270

6.3.3 Expressing Poisson's Equation with Kronecker Products 274

6.4 Summary of Methods for Solving Poisson's Equation 277

6.5 Basic Iterative Methods 279

6.5.1 Jacobi's Method 281

6.5.2 Gauss-Seidel Method 282

6.5.3 Successive Overrelaxation 283

6.5.4 Convergence of Jacobi's,Gauss-Seidel,and SOR(ω) Methods on the Model Problem 285

6.5.5 Detailed Convergence Criteria for Jacobi's,Gauss-Seidel,and SOR(ω)Methods 286

6.5.6 Chebyshev Acceleration and Symmetric SOR(SSOR) 294

6.6 Krylov Subspace Methods 299

6.6.1 Extracting Information about A via Matrix-Vector Mul-tiplication 301

6.6.2 Solving Ax=b Using the Krylov Subspace κk 305

6.6.3 Conjugate Gradient Method 307

6.6.4 Convergence Analysis of the Conjugate Gradient Method 312

6.6.5 Preconditioning 316

6.6.6 Other Krylov Subspace Algorithms for Solving Ax=b 319

6.7 Fast Fourier Transform 321

6.7.1 The Discrete Fourier Transform 323

6.7.2 Solving the Continuous Model Problem Using Fourier Series 324

6.7.3 Convolutions 325

6.7.4 Computing the Fast Fourier Transform 326

6.8 Block Cyclic Reduction 327

6.9 Multigrid 331

6.9.1 Overview of Multigrid on the Two-Dimensional Poisson's Equation 332

6.9.2 Detailed Description of Multigrid on the One-Dimensional Poisson's Equation 337

6.10 Domain Decomposition 347

6.10.1 Nonoverlapping Methods 348

6.10.2 Overlapping Methods 351

6.11 References and Other Topics for Chapter 6 356

6.12 Questions for Chapter 6 356

7 Iterative Methods for Eigenvalue Problems 361

7.1 Introduction 361

7.2 The Rayleigh-Ritz Method 362

7.3 The Lanczos Algorithm in Exact Arithmetic 366

7.4 The Lanczos Algorithm in Floating Point Arithmetic 375

7.5 The Lanczos Algorithm with Selective Orthogonalization 382

7.6 Beyond Selective Orthogonalization 383

7.7 Iterative Algorithms for the Nonsymmetric Eigenproblem 384

7.8 References and Other Topics for Chapter 7 386

7.9 Questions for Chapter 7 386

Bibliography 389

Index 409

返回顶部