当前位置:首页 > 数理化
表示论和复几何  英文
表示论和复几何  英文

表示论和复几何 英文PDF电子书下载

数理化

  • 电子书积分:15 积分如何计算积分?
  • 作 者:Neil Chriss著
  • 出 版 社:世界图书出版公司北京公司
  • 出版年份:2012
  • ISBN:7510040573
  • 页数:495 页
图书介绍:
《表示论和复几何 英文》目录
标签:几何 表示

Chapter 0.Introduction 1

Chapter 1.Symplectic Geometry 21

1.1. Symplectic Manifolds 21

1.2. Poisson Algebras 24

1.3. Poisson Structures arising from Noncommutative Algebras 26

1.4. The Moment Map 41

1.5. Coisotropic Subvarieties 49

1.6. Lagrangan Families 57

Chapter 2.Mosaic 61

2.1. Hilbert's Nullstellensatz 61

2.2. Affine Algebraic Varieties 63

2.3. The Deformation Construction 73

2.4. C-actions on a projective variety 81

2.5. Fixed Point Reduction 90

2.6. Borel-Moore Homology 93

2.7. Convolution in Borel-Moore Homology 110

Chapter 3.Complex Semisimple Groups 127

3.1. Semisimple Lie Algebras and Flag Varieties 127

3.2. Nilpotent Cone 144

3.3. The Steinberg Variety 154

3.4. Lagrangian Construction ofthe Weyl Group 161

3.5. Geometric Analysis of H(Z)-action 168

3.6. Irreducible Representations of Weyl Groups 175

3.7. Applications of the Jacobson-Morozov Theorem 183

Chapter 4.Springer Theory for U(s ln) 193

4.1. Geometric Construction of the Enveloping Algebra U(sln(C)) 193

4.2. Finite-Dimensional Simplesln(C)-Modules 199

4.3. Proofof the Main Theorem 206

4.4. Stabilization 214

Chapter 5.Equivariant K-Theory 231

5.1. Equivariant Resolutions 231

5.2. Basic K-Theoretic Constructions 243

5.3. Specialization in Equivariant K-Theory 254

5.4. The Koszul Complex and the Thom Isomorphism 260

5.5 Cellular Fibration Lemma 269

5.6. The Kiinneth Formula 273

5.7. Projective Bundle Theorem and Beilinson Resolution 276

5.8. The Chern Character 280

5.9. The Dimension Filtration and“Devissage” 286

5.10. The Localization Theorem 292

5.11. Functoriality 296

Chapter 6.Flag Varieties,K-Theory,and Harmonic Polynomials 303

6.1. Equivariant K-Theory of the Flag Variety 303

6.2. Equivariant K-Theory of the Steinberg Variety 311

6.3. Harmonic Polynomials 315

6.4. W-Harmonic Polynomials and Flag Varieties 321

6.5. Orbital Varieties 329

6.6. The Equivariant Hilbert Polynomial 335

6.7. Kostant's Theorem on Polynomial Rings 346

Chapter 7.Hecke Algebras and K-Theory 361

7.1. AffineWeyl Groups and Hecke Algebras 361

7.2. Main Theorems 366

7.3. Case q=1:Deformation Argument 370

7.4. Hilbert Polynomials and Orbital Varieties 383

7.5. The Hecke Algebra for SL2 389

7.6. Proof of the Main Theorem 395

Chapter 8.Representations of Convolution Algebras 411

8.1. Standard Modules 411

8.2. Character Formula for Standard modules 418

8.3. Constructible Complexes 421

8.4. Perverse Sheaves and the Classification Theorem 433

8.5. The Contravariant Form 438

8.6. Sheaf-Theoretic Analysis of the Convolution Algebra 445

8.7. Projective Modules over Convolution Algebra 460

8.8. A Non-Vanishing Result 468

8.9. Semi-Small Maps 479

Bibliography 487

返回顶部