第一章 函数、极限与连续 1
第一节 函数 1
第二节 极限 9
第三节 函数的连续性 26
自测题一 34
第二章 导数与微分 42
第一节 导数的概念 42
第二节 导数的运算 46
第三节 高阶导数 55
第四节 微分 57
自测题二 61
第三章 导数的应用 64
第一节 洛必达法则 64
第二节 函数的单调性、极值与最值 71
自测题三 81
第四章 不定积分 85
第一节 不定积分的概念 85
第二节 换元积分法 90
第三节 分部积分法 96
自测题四 98
第五章 定积分 101
第一节 定积分的概念 101
第二节 牛顿-莱布尼兹公式 108
第三节 定积分的换元积分法与分部积分法 112
第四节 定积分的应用 116
第五节 无限区间上的广义积分 121
自测题五 123
第六章 多元函数微积分 130
第一节 多元函数 130
第二节 二重积分 150
自测题六 162
第七章 微分方程 166
第一节 微分方程的基本概念 166
第二节 一阶微分方程 169
第三节 几类特殊的高阶方程 175
第四节 二阶线性齐次微分方程 178
自测题七 181
第八章 线性代数初步 184
第一节 行列式 184
第二节 矩阵 195
第三节 线性方程组 212
自测题八 220
参考答案 223
第一章习题答案 223
自测题一 225
第二章习题答案 227
自测题二 227
第三章习题答案 229
自测题三 230
第四章习题答案 231
自测题四 232
第五章习题答案 233
自测题五 234
第六章习题答案 235
自测题六 236
第七章习题答案 237
自测题七 238
第八章习题答案 239
自测题八 240