1 Basic Concepts and Definitions 1
1-1 The Nature of Thermodynamics 2
1-2 Dimensions and Units 3
1-3 System, Property, and State 8
1-4 Density, Specific Volume, and Specific Gravity 13
1-5 Pressure 14
1-6 The Zeroth Law and Temperature 20
1-7 Problem-Solving Techniques 25
1-8 Summary 27
Problems 29
2 The First Law of Thermodynamics 36
2-1 Concepts of Work and Energy 37
2-2 The First Law of Thermodynamics 49
2-3 A Conservation of Energy Principle for Closed Systems 50
2-4 The Nature of the Energy E 56
2-5 Heat Transfer 58
2-6 Expansion and Compression Work 61
2-7 Elastic Spring Work 71
2-8 Other Quasiequilibrium Work Interactions 73
2-9 Summary 77
Problems 78
3 Properties of a Pure, Simple Compressible Substance 95
3-1 The State Postulate and Simple Systems 96
3-2 The PvT Surface 97
3-3 The Pressure-Temperature Diagram 100
3-4 The Pressure-Specific Volume Diagram 101
3-5 The Temperature-Specific Volume Diagram 103
3-6 Tables of Properties of Pure Substances 104
3-7 Tabular Data and Closed-System Energy Analysis 119
3-8 The Specific Heats 126
3-9 Summary 128
3-10 Appendix: Fundamentals of Partial Derivatives 130
Problems 131
4 The Ideal Gas, Corresponding States, and Incompressible Models 148
4-1 Ideal-Gas Equation of State 149
4-2 Internal Energy, Enthalpy, and Specific-Heat Relations for Ideal Gases 153
4-3 Specific Heats of Ideal Gases 155
4-4 Energy Analysis of Closed Ideal-Gas Systems 161
4-5 The Compressibility Factor and the Corresponding States Principle 166
4-6 Property Relations for Incompressible Substances 172
4-7 Summary 177
Problems 178
5 Control-Volume Energy Analysis 200
5-1 Introduction 201
5-2 Conservation of Mass Principle for a Control Volume 201
5-3 Conservation of Energy Principle for a Control Volume 208
5-4 Steady-State Control-Volume Energy Equations 213
5-5 Comments on Problem-Solving Techniques 215
5-6 Engineering Applications Involving Steady-State Control Volumes 219
5-7 Introduction to Thermodynamic Cycles 234
5-8 Transient (Unsteady) Flow Analysis 240
5-9 Summary 250
Problems 251
6 The Second Law and Entropy 279
6-1 Introduction 280
6-2 Heat Engines, Refrigerators, and Heat Pumps 282
6-3 Second-Law Statements 288
6-4 Reversible and Irreversible Processes 295
6-5 The Second Law and Entropy--Classical Presentation 298
6-5-1 Analytical Forms of the Kelvin-Planck Statement 299
6-5-2 General Second-Law Limitations for Heat Engines 301
6-5-3 The Thermodynamic Temperature Scale 304
6-5-4 Performance Standards for Reversible Heat Engines 306
6-5-5 The Clausius Inequality 308
6-5-6 The Entropy Function 310
6-5-7 Entropy Generation and the Closed-System Entropy Balance 311
6-6 The Second Law and Entropy--Alternate Presentation 314
6-6-1 The Second-Law Postulate 314
6-6-2 An Entropy Balance for a Closed System 316
6-6-3 The Thermodynamic Temperature Scale and the Carnot Efficiency 317
6-6-4 Measuring the Entropy Function 320
6-6-5 Equivalence of the Four Statements of the Second Law 321
6-7 Entropy Balance for a Control Volume 323
6-8 Increase in Entropy Principle for a Closed System 325
6-9 Second-Law Limitations on the Performance of Heat Engines, Refrigerators, and Heat Pumps 327
6-10 Heat Transfer and the TS Diagram 339
6-10-1 Entropy Change for a Thermal-Energy Reservoir 339
6-10-2 Entropy Generation Associated with Heat Transfer 341
6-10-3 Loss in Work Potential Associated with Heat Transfer 344
6-11 Applications 346
6-12 Entropy in Terms of Randomness and Probability 354
6-13 Summary 358
Problems 360
7 Evaluation of Entropy Change and the Control-Volume Entropy Balance 385
7-1 Graphical and Tabular Presentation of Entropy Data 386
7-2 The T dS Equations for Pure, Simple Compressible Substances 393
7-3 Entropy Change of an Ideal Gas 395
7-4 Entropy Change of an Incompressible Substance 400
7-5 Applications of the Steady-State Entropy Balance for a Control Volume 403
7-6 Steady-Flow Work Relationships 413
7-7 Summary 417
Problems 419
8 Some Consequences of the Second Law 435
8-1 Isentropic Processes 436
8-2 Adiabatic Efficiencies of Steady-Flow Devices 448
8-3 The Carnot Cycle 462
8-4 The Transient Adiabatic-Discharge Process 467
8-5 Summary 469
Problems 470
9 Availability (Exergy) and Irreversibility 487
9-1 Introduction 488
9-2 Work and Entropy Production 488
9-3 Availability 491
9-4 Control-Volume Availability Analysis 505
9-5 Second-Law Efficiency or Effectiveness 511
9-6 Summary 519
Problems 521
10 NONREACTIVE IDEAL-GAS MIXTURES 530
10-1 Composition Analysis of Gas Mixtures 531
10-2 PvT Relationships for Ideal-Gas Mixtures 535
10-3 Internal Energy, Enthalpy, and Entropy for Ideal-Gas Mixtures 538
10-4 Mixing Processes Involving Ideal Gases 545
10-5 Properties of an Ideal Gas-Vapor Mixture 550
10-6 The Adiabatic-Saturation and Wet-Bulb Temperatures 558
10-7 The Psychrometric Chart 561
10-8 Air-Conditioning Processes 564
10-9 Summary 585
Problems 588
II PvT Behavior of Real Gases and Real-Gas Mixtures 614
11-1 The Virial Equation of State 615
11-2 Two-Constant Equations of State 616
11-3 Other Equations of State 620
11-4 Real-Gas Mixtures 622
11-5 Summary 627
Suggested Readings and References 629
Problems 629
12. Generalized Thermodynamic Relationships 634
12-1 Fundamentals of Partial Derivatives 635
12-2 Some Fundamental Property Relations 637
12-3 Generalized Relations for Changes in Entropy,Internal Energy, and Enthalpy 639
12-4 Generalized Relations for cp and cv 644
12-5 Vapor Pressure and the Clapeyron Equation 649
12-6 The Joule-Thomson Coefficient 653
12-7 Generalized Thermodynamic Charts 657
12-8 Development of Property Tables 664
12-9 Summary 667
Problems 669
13 Chemical Reactions 679
13-1 Stoichiometry of Reactions 680
13-2 Actual Combustion Processes 686
13-3 The Enthalpy of Formation 690
13-4 Steady-Flow Energy Analysis of Reacting Mixtures 693
13-5 Adiabatic Flame Temperature 698
13-6 Constant-Volume Thermochemical Analysis 702
13-7 Enthalpy of Reaction and Heating Values 706
13-8 Second Law Analysis of Reactions 711
13-9 Availability Analysis of Reacting Systems 716
13-10 Fuel Cells 722
13-11 Summary 729
Problems 731
14 Chemical Equilibrium 753
14-1 Introduction 754
14-2 The Gibbs Criterion 756
14-3 Equilibrium and the Chemical Potential 759
14-4 The Chemical Potential of an Ideal Gas 761
14-5 The Equilibrium Constants K0 and Kp 762
14-6 Calculation of K0 Values 765
14-7 Calculation of Equilibrium Compositions 767
14-8 First-Law Analysis of Equilibrium Ideal-Gas Mixtures 774
14-9 The van't Hoff Equation Relating KB and hR 777
14-10 Simultaneous Reactions 779
14-11 Summary 782
Problems 783
17 Refrigeration Systems 967
17-1 The Reversed Carnot Cycle 968
17-2 The Vapor-Compression Refrigeration Cycle 969
17-3 Heat Pumps 980
17-4 Cascade and Multistaged Vapor-Compression Systems 982
17-5 Liquefaction and Solidification of Gases 989
17-6 Gas Refrigeration Cycles 991
17-7 Stirling Refrigeration Cycle 993
17-8 Absorption Refrigeration 996
17-9 Availability Analysis of a Vapor-Compression Refrigeration Cycle 999
17-10 Summary 1003
Problems 1004
Bibliography 1025
A-1 Supplementary Tables and Figures(SI Units) 1027
Table A-1 Physical Constants and Conversion Factors 1028
Table A-2 Molar Mass, Critical Constants, and Gas-Phase Specific Heats at 25℃ and 1 atm for Some Common Substances 1029
Table A-3 Ideal-Gas Specific-Heat Data for Selected Gases, kJ/kg·K 1030
Table A-4 Specific Heats of Some Common Liquids and Solids 1032
Table A-5 Ideal-gas Properties of Air 1033
Table A-6 Ideal-Gas Enthalpy, Interna) Energy, and Absolute Entropy of Diatomic Nitrogen (N2) 1035
Table A-7 Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Diatomic Oxygen (O2) 1037
Table A-8 Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Carbon Monoxide (CO) 1039
Table A-9 Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Carbon Dioxide (CO2) 1041
Table A-10 Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Water (H2O) 1043
Table A-11 Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Diatomic Hydrogen (H2),Monatomic Oxygen (O), and Hydroxy 1 (OH) 1045
Table A-12 Properties of Saturated Water:Temperature Table 1047
Table A-13 Properties of Saturated Water: Pressure Table 1049
Table A-14 Properties of Water: Superheated-Vapor Table 1051
Table A-15 Properties of Water: Compressed-Liquid Table 1055
Table A-16 Properties of Saturated Refrigerant 134a(CF4H2):Temperature Table 1056
Table A-17 Properties of Saturated Refrigerant 134a(CF4H2):Pressure Table 1057
Table A-18 Properties of Superheated Refrigerant 134a(CF4H2) 1058
Table A-19 Properties of Saturated Nitrogen (N2): Temperature and Pressure Tables 1061
Table A-20 Properties of Nitrogen (N2): Superheated-Vapor Table 1062
Table A-21 Thermodynamic Properties of Potassium 1063
Table A-22 Constants for the Benedict-Webb-Rubin,Redlich-Kwong,and van der Waals Equations of State 1064
Table A-23 Values of the Enthalpy of Formation, Gibbs Function of Formation, Absolute Entropy, and Enthalpy of Vaporization at 25℃ and 1 atm 1065
Table A-24 Logarithms to the Base 10 of the Equilibrium Constant K0 1066
Figure A-25 Psychrometric Chart, Metric Units, Barometric Pressure 1.01 bars 1067
Figure A-26 Mollier Diagram for Steam 1068
Figure A-27 Generalized Compressibility Chart, PR ≤ 1 1069
Figure A-28 Compressibility Chart, Low-Pressure Range 1070
Figure A-29 Compressibility Chart, High-Pressure Range 1071
Figure A-30 Generalized Enthalpy Chart 1072
Figure A-31 Generalized Entropy Chart 1073
Figure A-32 Temperature-Entropy Diagram for Refrigerant 134a 1074
A-2 Supplementary Tables and Figures(USCS Units) 1075
Table A-1E Physical Constants and Conversion Factors 1076
Table A-2E Molar Mass, Critical Constants, and Gas-Phase Specific Heats at 77°F and 1 atm for Some Common Substances 1077
Table A-3E Ideal-Gas Specific-Heat Data for Various Gases, Btu/lbm·°F 1078
Table A-4E Specific Heats of Some Common Liquids and Solids 1080
Table A-5E Ideal-Gas Properties of Air 1081
Table A-6E Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Diatomic Nitrogen (N2) 1083
Table A-7E Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Diatomic Oxygen (O2) 1085
Table A-8E Ideal-Gas Enthalpy, Internal Energy, and Absolute Entropy of Carbon Monoxide (CO) 1087
Figure A-24E Temperature-Entropy Diagram for Carbon Dioxide (CO2) 1117
Figure A-25E Psychrometric Chart, USCS Units, Barometric Pressure 14.696 psia 1118
Figure A-26E Mollier Diagram for Steam 1119
A-3 Introduction to EES 1120
Overview 1120
Background Information 1120
A Thermodynamics Example Problem 1124
Loading a Textbook File 1132
Symbols 1133
Selected Problem Answers 1138
Photo Credits 1155
Index 1156