第八章 空间解析几何与向量代数初步 1
第1节 空间直角坐标系和向量代数 1
习题8-1 7
第2节 数量积向量积混合积 8
习题8-2 14
第3节 曲面及其方程 15
习题8-3 21
第4节 空间曲线及其方程 22
习题8-4 25
第5节 平面及其方程 26
习题8-5 31
第6节 空间直线及其方程 31
习题8-6 37
总练习八 38
第九章 多元函数微分学 41
第1节 二元函数及其极限 41
习题9 1 47
第2节 偏导数 48
习题9-2 53
第3节 全微分 54
习题9-3 58
第4节 多元复合函数的求导法则 59
习题9-4 65
第5节 隐函数的求导法 66
习题9-5 72
第6节 多元微分学的几何应用 73
习题9-6 78
第7节 方向导数与梯度 79
习题9-7 84
第8节 多元函数的极值 84
习题9-8 92
第9节 二元函数的泰勒公式 93
习题9 9 97
总练习九 97
第十章 重积分 100
第1节 二重积分的概念与性质 100
习题10-1 104
第2节 二重积分的计算 105
习题10-2 109
第3节 二重积分的换元积分 111
习题10-3 115
第4节 三重积分 116
习题10-4 123
第5节 重积分应用 124
习题10-5 129
总练习十 129
第十一章 曲线与曲面积分 133
第1节 第一型曲线积分 133
习题11-1 137
第2节 第二型曲线积分 137
习题11-2 142
第3节 格林公式及其应用 144
习题11-3 151
第4节 第一型曲面积分 153
习题11-4 157
第5节 第二型曲面积分 158
习题11-5 164
第6节 高斯公式 165
习题11-6 168
第7节 斯托克斯公式 169
习题11-7 172
总练习十一 173
第十二章 无穷级数 176
第1节 数项级数 176
习题12-1 180
第2节 正项级数 181
习题12-2 186
第3节 一般项级数 187
习题12-3 191
第4节 幂级数 192
习题12-4 197
第5节 函数的幂级数展开 198
习题12-5 203
第6节 幂级数的简单应用 204
习题12-6 206
第7节 傅里叶级数 206
习题12-7 211
第8节 正弦和余弦级数 212
习题12-8 217
总练习十二 217
附录练习题答案或提示 221
主要参考文献 238