CHAPTER 1.QUANTUM BEHAVIOR 1
1-1 Atomic mechanics 1
1-2 An experiment with bullets 1
1-3 An experiment with waves 3
1-4 An experiment with electrons 4
1-5 The interference of electron waves 5
1-6 Watching the electrons 6
1-7 First principles of quantum mechanics 9
1-8 The uncertainty principle 11
CHAPTER 2.THE RELATION OF WAVE AND PARTICLE VIEWPOINTS 12
2-1 Probability wave amplitudes 12
2-2 Measurement of position and momentum 13
2-3 Crystal diffraction 15
2-4 The size of an atom 16
2-5 Energy levels 18
2-6 Philosophical implications 19
CHAPTER 3.PROBABILITY AMPLITUDES 22
3-1 The laws for combining amplitudes 22
3-2 The two-slit interference pattern 26
3-3 Scattering from a crystal 28
3-4 Identical particles 30
CHAPTER 4.IDENTICAL PARTICLES 34
4-1 Bose particles and Fermi particles 34
4-2 States with two Bose particles 36
4-3 States with n Bose particles 39
4-4 Emission and absorption of photons 40
4-5 The blackbody spectrum 41
4-6 Liquid helium 45
4-7 The exclusion principle 45
CHAPTER 5.SPIN ONE 49
5-1 Filtering atoms with a Stern-Gerlach apparatus 49
5-2 Experiments with filtered atoms 53
5-3 Stern-Gerlach filters in series 54
5-4 Base states 56
5-5 Interfering amplitudes 58
5-6 The machinery of quantum mechanics 60
5-7 Transforming to a different base 63
5-8 Other situations 64
CHAPTER 6.SPIN ONE-HALF 66
6-1 Transforming amplitudes 66
6-2 Transforming to a rotated coordinate system 68
6-3 Rotations about the z-axis 71
6-4 Rotations of 180° and 90° about y 74
6-5 Rotations about x 76
6-6 Arbitrary rotations 77
CHAPTER 7.THE DEPENDENCE OF AMPLITUDES ON TIME 80
7-1 Atoms at rest; stationary states 80
7-2 Uniform motion 82
7-3 Potential energy; energy conservation 85
7-4 Forces; the classical limit 88
7-5 The “precession” of a spin one-half particle 89
CHAPTER 8.THE HAMILTONIAN MATRIX 93
8-1 Amplitudes and vectors 93
8-2 Resolving state vectors 95
8-3 What are the base states of the world? 97
8-4 How states change with time 99
8-5 The Hamiltonian matrix 102
8-6 The ammonia molecule 103
CHAPTER 9.THE AMMONIA MASER 107
9-1 The states of an ammonia molecule 107
9-2 The molecule in a static electric field 111
9-3 Transitions in a time-dependent field 115
9-4 Transitions at resonance 117
9-5 Transitions off resonance 119
9-6 The absorption of light 120
CHAPTER 10.OTHER TWO-STATE SYSTEMS 122
10-1 The hydrogen molecular ion 122
10-2 Nuclear forces 127
10-3 The hydrogen molecule 129
10-4 The benzene molecule 131
10-5 Dyes 133
10-6 The Hamiltonian of a spin one-half particle in a magnetic field 133
10-7 The spinning electron in a magnetic field 136
CHAPTER 11.MORE TWO-STATE SYSTEMS 139
11-1 The Pauli spin matrices 139
11-2 The spin matrices as operators 143
11-3 The solution of the two-state equations 146
11-4 The polarization states of the photon 147
11-5 The neutral K-meson 150
11-6 Generalization to N-state systems 159
CHAPTER 12.THE HYPERFINE SPLITTING IN HYDROGEN 163
12-1 Base states for a system with two spin one-half particles 163
12-2 The Hamiltonian for the ground state of hydrogen 165
12-3 The energy levels 169
12-4 The Zeeman splitting 171
12-5 The states in a magnetic field 174
12-6 The projection matrix for spin one 176
CHAPTER 13.PROPAGATION IN A CRYSTAL LATTICE 179
13-1 States for an electron in a one-dimensional lattice 179
13-2 States of definite energy 181
13-3 Time-dependent states 184
13-4 An electron in a three-dimensional lattice 185
13-5 Other states in a lattice 186
13-6 Scattering from imperfections in the lattice 188
13-7 Trapping by a lattice imperfection 190
13-8 Scattering amplitudes and bound states 191
CHAPTER 14.SEMICONDUCTORS 192
14-1 Electrons and holes in semiconductors 192
14-2 Impure semiconductors 195
14-3 The Hall effect 198
14-4 Semiconductor junctions 199
14-5 Rectification at a semiconductor junction 201
14-6 The transistor 202
CHAPTER 15.THE INDEPENDENT PARTICLE APPROXIMATION 204
15-1 Spin waves 204
15-2 Two spin waves 207
15-3 Independent particles 209
15-4 The benzene molecule 210
15-5 More organic chemistry 213
15-6 Other uses of the approximation 215
CHAPTER 16.THE DEPENDENCE OF AMPLITUDES ON POSITION 217
16-1 Amplitudes on a line 217
16-2 The wave function 221
16-3 States of definite momentum 223
16-4 Normalization of the states in x 225
16-5 The Schrodinger equation 227
16-6 Quantized energy levels 230
CHAPTER 17.SYMMETRY AND CONSERVATION LAWS 233
17-1 Symmetry 233
17-2 Symmetry and conservation 235
17-3 The conservation laws 239
17-4 Polarized light 241
17-5 The disintegration of the A 0 243
17-6 Summary of the rotation matrices 247
CHAPTER 18.ANGULAR MOMENTUM 249
18-1 Electric dipole radiation 249
18-2 Light scattering 251
18-3 The annihilation of positronium 253
18-4 Rotation matrix for any spin 257
18-5 Measuring a nuclear spin 261
18-6 Composition of angular momentum 262
18-7 Added Note 1:Derivation of the rotation matrix 267
18-8 Added Note 2:Conservation of parity in photon emission 270
CHAPTER 19.THE HYDROGEN ATOM AND THE PERIODIC TABLE 271
19-1 Schrodinger’s equation for the hydrogen atom 271
19-2 Spherically symmetric solutions 272
19-3 States with an angular dependence 276
19-4 The general solution for hydrogen 280
19-5 The hydrogen wave functions 282
19-6 The periodic table 283
CHAPTER 20.OPERATORS 289
20-1 Operations and operators 289
20-2 Average energies 291
20-3 The average energy of an atom 294
20-4 The position operator 296
20-5 The momentum operator 297
20-6 Angular momentum 302
20-7 The change of averages with time 303
CHAPTER 21. THE SCHRODINGER EQUATION IN A CLASSICAL CONTEXT:A SEMINAR ON SUPERCONDUCTIVITY 306
21-1 Schrodinger’s equation in a magnetic field 306
21-2 The equation of continuity for probabilities 308
21-3 Two kinds of momentum 309
21-4 The meaning of the wave function 311
21-5 Superconductivity 312
21-6 The Meissner effect 313
21-7 Flux quantization 315
21-8 The dynamics of superconductivity 317
21-9 The Josephson junction 319
CHAPTER34 The Magnetism of Matter 324
34-1 Diamagnetism and paramagnetism 324
34-2 Magnetic moments and angular momentum 326
34-3 The precession of atomic magnets 327
34-4 Diamagnetism 328
34-5 Larmor’s theorem 329
34-6 Classical physics gives neither diamagnetism nor paramagnetism 331
34-7 Angular momentum in quantum mechanics 331
34-8 The magnetic energy of atoms 334
CHAPTER35 Paramagnetism and Magnetic Resonance 336
35-1 Quantized magnetic states 336
35-2 The Stern-Gerlach experiment 338
35-3 The Rabi molecular-beam method 339
35-4 The paramagnetism of bulk materials 341
35-5 Cooling by adiabatic demagnetization 344
35-6 Nuclear magnetic resonance 345