第一部分 线性自动调整理论基础 5
第一章 一般概念 5
1-1 自动调整的基本任务 5
目录 5
1-2 自动调整系统的分类 7
1-3 对自动调整系统所提出的基本要求 10
第二章 自动调整系统的对象和元件 12
2-1 调整对象 12
2-2 调整器元件 15
3-1 自动调整系统的静特性及其作图法 22
第三章 自动调整系统 22
3-2 按动态性质来划分自动调整系统成若干环节 24
3-3 编写自动调整系统的方程式 30
3-4 自动调整系统方程式的编写举例 31
第四章 数学基础(拉氏变换) 33
4-1 函数的拉氏变换的定义和公式 33
4-2 函数的导数和积分的拉氏变换 34
4-3 拉氏变换的反演 37
4-4 最终值定律和起始值定律 37
4-5 用拉氏变换解微分方程式 38
4-6 分解定律 39
第五章 传递函数和频率特性 42
5-1 传递函数的定义 42
5-2 由环节的传递函数求系统的传递函数 43
5-3 频率特性 45
5-4 频率特性的作图 47
第六章 自动调整系统的稳定性 52
6-1 稳定的概念 52
6-2 系统特征方程式的根与稳定性的关系 52
6-3 劳斯-古尔维茨判据 55
6-4 米哈依洛夫判据 57
6-5 奈魁斯特判据 60
6-6 对数判据 64
6-7 Д-域划分的概念 66
6-8 根据一个复数参数的Д-域划分 68
6-9 关于两个实数参数的Д-域划分 70
6-10 单环系统的稳定 72
6-11 自动调整系统的镇定 75
6-12 各种镇定装置的应用 79
7-2 调整过程品质的评价 81
7-1 调整过程品质的指标 81
第七章 调整系统品质的研究 81
7-3 间接评价 83
7-4 稳定度与振荡度 84
7-5 积分评价 86
7-6 频率法 88
7-7 频率特性和调整过程之间的关系 91
7-8 按闭环系统实频率特性的特点确定系统的某些品质指标 93
7-9 根据频率特性绘出调整过程的近似法 95
7-10 闭环系统实频率特性的绘制 97
第八章 自动调整系统的典型非线性特性 100
第二部分 非线性自动调整理论基础 100
第九章 研究非线性自动调整系统的相迹法 104
9-1 相平面的概念 104
9-2 积分曲线方程式和奇点的分类 108
9-3 自持振荡和奇线的分类 112
9-4 右边不可解析的方程式所描述的调整系统的相平面 114
9-5 多叶相曲面的概念 120
第十章 研究非线性自动调整系统的谐波平衡法 125
10-1 非线性元件的等效复放大系数 125
10-2 具有非线性元件的调整系统的方程式 130
10-3 非线性自动调整系统自持振荡的稳定性 131
10-4 非线性调整系统稳定性的研究举例 132
10-5 具有非零阶非线性元件的调整系统的分析 142
10-6 非线性调整系统的镇定 146
10-7 正弦波扰动下的非线性系统 147
10-8 某些非线性元件的等效复放大系数的计算 149
第一部分 的补充材料 153
(Ⅰ)自动调整系统静特性的作法 153
Ⅰ-1 环节相联接时的特性 153
Ⅰ-2 闭合自动调整系统的静特性 156
Ⅰ-3 由n个线性环节串联成的单回路系统的静特性 159
(Ⅱ)自动调整系统中对象和元件方程式的编写法 160
Ⅱ-1 具有一个自由度的理想化原动机的方程式 160
Ⅱ-2 直流发电机的方程式 163
Ⅱ-4 他激直流电动机的方程式 163
Ⅱ-3 液力伺服马达的方程式 167
附录 171
1.常用函数的拉氏变换表 171
2.函数e-x以及以弧度(弪)为单位的角的积分正弦和三角函数表 172
3.h函数表 175