Chapter 1 INTRODUCTION 1
1.1 What and How? 2
1.2 Physical Origins and Rate Equations 3
1.2.1 Conduction 3
1.2.2 Convection 6
1.2.3 Radiation 9
1.2.4 Relationship to Thermodynamics 13
1.3 The Conservation of Energy Requirement 13
1.3.1 Conservation of Energy for a Control Volume 14
1.3.2 The Surface Energy Balance 19
1.3.3 Application of the Conservation Laws:Methodology 21
1.4 Analysis of Heat Transfer Problems:Methodology 22
1.5 Relevance of Heat Transfer 23
1.6 Units and Dimensions 24
1.7 Summary 27
Problems 29
Chapter 2 INTRODUCTION TO CONDUCTION 43
2.1 The Conduction Rate Equation 44
2.2 The Thermal Properties of Matter 46
2.2.1 Thermal Conductivity 47
2.2.2 Other Relevant Properties 51
2.3 The Heat Diffusion Equation 53
2.4 Boundary and Initial Conditions 62
2.5 Summary 65
References 66
Problems 66
Chapter 3 ONE-DIMENSIONAL,STEADY-STATE CONDUCTION 79
3.1 The Plane Wall 80
3.1.1 Temperature Distribution 80
3.1.2 Thermal Resistance 82
3.1.3 The Composite Wall 84
3.1.4 Contact Resistance 86
3.2 An Alternative Conduction Analysis 92
3.3 Radial Systems 96
3.3.1 The Cylinder 97
3.3.2 The Sphere 103
3.4 Summary of One-Dimensional Conduction Results 107
3.5 Conduction with Thermal Energy Generation 108
3.5.1 The Plane Wall 108
3.5.2 Radial Systems 114
3.5.3 Application of Resistance Concepts 119
3.6 Heat Transfer from Extended Surfaces 119
3.6.1 A General Conduction Analysis 122
3.6.2 Fins of Uniform Cross-Sectional Area 123
3.6.3 Fin Performance 130
3.6.4 Overall Surface Efficiency 134
3.6.5 Fin Contact Resistance 138
3.7 Summary 141
References 142
Problems 142
Chapter 4 TWO-DIMENSIONAL,STEADY-STATE CONDUCTION 171
4.1 Alternative Approaches 172
4.2 The Method of Separation of Variables 173
4.3 The Graphical Method 177
4.3.1 Methodology of Constructing a Flux Plot 178
4.3.2 Determination of the Heat Transfer Rate 179
4.3.3 The Conduction Shape Factor 180
4.4 Finite-Difference Equations 184
4.4.1 The Nodal Network 185
4.4.2 Finite-Difference Form of the Heat Equation 185
4.4.3 The Energy Balance Method 187
4.5 Finite-Difference Solutions 194
4.5.1 The Matrix Inversion Method 194
4.5.2 Gauss-Seidel Iteration 200
4.5.3 Some Precautions 203
4.6 Summary 203
References 204
Problems 204
Chapter 5 TRANSIENT CONDUCTION 225
5.1 The Lumped Capacitance Method 226
5.2 Validity of the Lumped Capacitance Method 229
5.3 General Lumped Capacitance Analysis 234
5.4 Spatial Effects 237
5.5 The Plane Wall with Convection 239
5.5.1 Exact Solution 239
5.5.2 Approximate Solution 240
5.5.3 Total Energy Transfer 240
5.5.4 Graphical Representations 242
5.6 Radial Systems with Convection 245
5.6.1 Exact Solutions 245
5.6.2 Approximate Solutions 246
5.6.3 Total Energy Transfer 247
5.6.4 Graphical Representation 249
5.7 The Semi-infinite Solid 259
5.8 Multidimensional Effects 263
5.9 Finite-Difference Methods 270
5.9.1 Discretization of the Heat Equation:The Explicit Method 271
5.9.2 Discretization of the Heat Equation:The Implicit Method 279
5.10 Summary 287
References 287
Problems 288
Chapter 6 INTRODUCTION TO CONVECTION 312
6.1 The Convection Transfer Problem 312
6.2 The Convection Boundary Layers 318
6.2.1 The Velocity Boundary Layer 318
6.2.2 The Thermal Boundary Layer 319
6.2.3 The Concentration Boundary Layer 320
6.2.4 Significance of the Boundary Layers 323
6.3 Laminar and Turbulent Flow 324
6.4 The Convection Transfer Equations 326
6.4.1 The Velocity Boundary Layer 326
6.4.2 The Thermal Boundary Layer 331
6.4.3 The Concentration Boundary Layer 335
6.5 Approximations and Special Conditions 341
6.6 Boundary Layer Similarity:The Normalized Convection Transfer Equations 343
6.6.1 Boundary Layer Similarity Parameters 344
6.6.2 Functional Form of the Solutions 346
6.7 Physical Significance of the Dimensionless Parameters 351
6.8 Boundary Layer Analogies 355
6.8.1 The Heat and Mass Transfer Analogy 355
6.8.2 Evaporative Cooling 359
6.8.3 The Reynolds Analogy 363
6.9 The Effects of Turbulence 364
6.10 The Convection Coefficients 367
6.11 Summary 368
References 368
Problems 369
Chapter 7 EXTERNAL FLOW 385
7.1 The Empirical Method 387
7.2 The Flat Plate in Parallel Flow 389
7.2.1 Laminar Flow:A Similarity Solution 389
7.2.2 Turbulent Flow 396
7.2.3 Mixed Boundary Layer Conditions 397
7.2.4 Special Cases 399
7.3 Methodology for a Convection Calculation 401
7.4 The Cylinder in Cross Flow 408
7.4.1 Flow Considerations 408
7.4.2 Convection Heat and Mass Transfer 411
7.5 The Sphere 417
7.6 Flow Across Banks of Tubes 420
7.7 Impinging Jets 431
7.7.1 Hydrodynamic and Geometric Considerations 431
7.7.2 Convection Heat and Mass Transfer 433
7.8 Packed Beds 438
7.9 Summary 440
References 441
Problems 442
Chapter 8 INTERNAL FLOW 467
8.1 Hydrodynamic Considerations 468
8.1.1 Flow Conditions 468
8.1.2 The Mean Velocity 469
8.1.3 Velocity Profile in the Fully Developed Region 470
8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 472
8.2 Thermal Considerations 474
8.2.1 The Mean Temperature 475
8.2.2 Newton’s Law of Cooling 476
8.2.3 Fully Developed Conditions 476
8.3 The Energy Balance 480
8.3.1 General Considerations 480
8.3.2 Constant Surface Heat Flux 482
8.3.3 Constant Surface Temperature 485
8.4 Laminar Flow in Circular Tubes:Thermal Analysis and Convection Correlations 489
8.4.1 The Fully Developed Region 489
8.4.2 The Entry Region 494
8.5 Convection Correlations:Turbulent Flow in Circular Tubes 495
8.6 Convection Correlations:Noncircular Tubes 501
8.7 The Concentric Tube Annulus 502
8.8 Heat Transfer Enhancement 504
8.9 Convection Mass Transfer 505
8.10 Summary 507
References 509
Problems 510
Chapter 9 FREE CONVECTION 529
9.1 Physical Considerations 530
9.2 The Governing Equations 533
9.3 Similarity Considerations 535
9.4 Laminar Free Convection on a Vertical Surface 536
9.5 The Effects of Turbulence 539
9.6 Empirical Correlations:External Free Convection Flows 541
9.6.1 The Vertical Plate 542
9.6.2 Inclined and Horizontal Plates 546
9.6.3 The Long Horizontal Cylinder 550
9.6.4 Spheres 553
9.7 Free Convection within Parallel Plate Channels 555
9.7.1 Vertical Channels 555
9.7.2 Inclined Channels 558
9.8 Empirical Correlations:Enclosures 558
9.8.1 Rectangular Cavities 559
9.8.2 Concentric Cylinders 562
9.8.3 Concentric Spheres 563
9.9 Combined Free and Forced Convection 566
9.10 Convection Mass Transfer 567
9.11 Summary 567
References 568
Problems 570
Chapter 10 BOILING AND CONDENSATION 587
10.1 Dimensionless Parameters in Boiling and Condensation 588
10.2 Boiling Modes 589
10.3 Pool Boiling 590
10.3.1 The Boiling Curve 590
10.3.2 Modes of Pool Boiling 592
10.4 Pool Boiling Correlations 596
10.4.1 Nucleate Pool Boiling 596
10.4.2 Critical Heat Flux for Nucleate Pool Boiling 597
10.4.3 Minimum Heat Flux 598
10.4.4 Film Pool Boiling 599
10.4.5 Parametric Effects on Pool Boiling 600
10.5 Forced-Convection Boiling 606
10.5.1 External Forced-Convection Boiling 606
10.5.2 Two-Phase Flow 607
10.6 Condensation:Physical Mechanisms 608
10.7 Laminar Film Condensation on a Vertical Plate 610
10.8 Turbulent Film Condensation 615
10.9 Film Condensation on Radial Systems 619
10.10 Film Condensation in Horizontal Tubes 622
10.11 Dropwise Condensation 623
10.12 Summary 624
References 624
Problems 627
Chapter 11 HEAT EXCHANGERS 639
11.1 Heat Exchanger Types 640
11.2 The Overall Heat Transfer Coefficient 642
11.3 Heat Exchanger Analysis:Use of the Log Mean Temperature Difference 645
11.3.1 The Parallel-Flow Heat Exchanger 646
11.3.2 The Counterflow Heat Exchanger 649
11.3.3 Special Operating Conditions 650
11.3.4 Multipass and Cross-Flow Heat Exchangers 650
11.4 Heat Exchanger Analysis:The Effectiveness-NTU Method 658
11.4.1 Definitions 658
11.4.2 Effectiveness-NTU Relations 660
11.5 Methodology of a Heat Exchanger Calculation 666
11.6 Compact Heat Exchangers 672
11.7 Summary 678
References 679
Problems 680
Chapter 12 RADIATION:PROCESSES AND PROPERTIES 695
12.1 Fundamental Concepts 696
12.2 Radiation Intensity 699
12.2.1 Definitions 699
12.2.2 Relation to Emission 702
12.2.3 Relation to Irradiation 706
12.2.4 Relation to Radiosity 708
12.3 Blackbody Radiation 709
12.3.1 The Planck Distribution 710
12.3.2 Wien’s Displacement Law 712
12.3.3 The Stefan-Boltzmann Law 712
12.3.4 Band Emission 713
12.4 Surface Emission 719
12.5 Surface Absorption,Reflection,and Transmission 729
12.5.1 Absorptivity 731
12.5.2 Reflectivity 732
12.5.3 Transmissivity 734
12.5.4 Special Considerations 734
12.6 Kirchhoff’s Law 740
12.7 The Gray Surface 742
12.8 Environmental Radiation 749
12.9 Summary 756
References 758
Problems 759
Chapter 13 RADIATION EXCHANGE BETWEEN SURFACES 791
13.1 The View Factor 792
13.1.1 The View Factor Integral 792
13.1.2 View Factor Relations 794
13.2 Blackbody Radiation Exchange 803
13.3 Radiation Exchange Between Diffuse,Gray Surfaces in an Enclosure 806
13.3.1 Net Radiation Exchange at a Surface 806
13.3.2 Radiation Exchange Between Surfaces 808
13.3.3 The Two-Surface Enclosure 814
13.3.4 Radiation Shields 816
13.3.5 The Reradiating Surface 819
13.4 Multimode Heat Transfer 824
13.5 Additional Effects 827
13.5.1 Volumetric Absorption 828
13.5.2 Gaseous Emission and Absorption 829
13.6 Summary 833
References 833
Problems 834
Chapter 14 DIFFUSION MASS TRANSFER 871
14.1 Physical Origins and Rate Equations 872
14.1.1 Physical Origins 872
14.1.2 Mixture Composition 873
14.1.3 Fick’s Law of Diffusion 875
14.1.4 Restrictive Conditions 875
14.1.5 Mass Diffusion Coefficient 880
14.2 Conservation of Species 880
14.2.1 Conservation of Species for a Control Volume 881
14.2.2 The Mass Diffusion Equation 881
14.3 Boundary and Initial Conditions 884
14.4 Mass Diffusion Without Homogeneous Chemical Reactions 888
14.4.1 Stationary Media with Specified Surface Concentrations 889
14.4.2 Stationary Media with Catalytic Surface Reactions 893
14.4.3 Equimolar Counterdiffusion 896
14.4.4 Evaporation in a Column 900
14.5 Mass Diffusion with Homogeneous Chemical Reactions 902
14.6 Transient Diffusion 906
References 910
Problems 911
Appendix A THERMOPHYSICAL PROPERTIES OF MATTER 921
Appendix B MATHEMATICAL RELATIONS AND FUNCTIONS 953
Appendix C AN INTEGRAL LAMINAR BOUNDARY LAYER SOLUTION FOR PARALLEL FLOW OVER A FLAT PLATE 959
Index 965